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ARTICLE INFO ABSTRACT

Keywords: Predominant frequency (fo) characterization across large seismically active regions remains challenging due to
Predominant frequency limited field measurements and cost constraints. Existing fo mapping approaches rely exclusively on spatial
GLO-30 DEM

interpolation methods (kriging, inverse distance weighting, natural neighbor) that redistribute measured values
without incorporating terrain morphometry, geological context, or subsurface parameters as predictors. This
study develops a DEM-based machine learning methodology for regional-scale fo prediction in the Himalayan
region and Indo-Gangetic Plains, addressing critical data scarcity in earthquake-prone developing countries. We
compiled 4400 fo measurements from 26 published HVSR studies using systematic georeferencing procedures to
ensure spatial consistency. The methodology employs a two-stage regression kriging framework: (1) stacked
ensemble machine learning models trained on 20 predictor variables using GLO-30 DEM morphometric pa-
rameters (elevation, slope, curvature indices), geological classifications, and bedrock depth information to
capture nonlinear terrain-frequency relationships; and (2) ordinary kriging of model residuals to account for
spatial correlation patterns. Cross-validation partitioning ensures unbiased residuals, while Bayesian optimiza-
tion determines optimal hyperparameters for base model selection. Feature importance analysis reveals that
valley bottom identification (MRVBF), geological formation characteristics, and bedrock depth provide primary
predictive capability (Shapley values ~0.15-0.18), demonstrating that terrain morphometry and subsurface
parameters effectively control fo variation at regional scales. The stacked ensemble achieves R? = 0.516 and
RMSE = 0.634 log units, with variogram analysis revealing spatial correlation extending 7.3 km and structured
variance accounting for 52 % of model residuals. High-resolution fo maps (50 m grid) generated for Delhi,
Kathmandu, and Dhaka differentiate site response zones: low frequencies (<1.0 Hz) in deep sedimentary basins
versus high frequencies (>3.0 Hz) in bedrock-controlled areas.

This work represents the first regional-scale application of DEM-derived terrain morphometry for direct fo
prediction, utilizing a much larger compiled dataset for this purpose than previous basin-scale studies. Unlike
previous studies that employed purely interpolation techniques without predictive parameters, this hybrid
framework integrates physical predictors (terrain morphometry, geology, bedrock depth) with spatial modelling
to produce more robust fo maps. Results demonstrate that incorporating satellite-derived morphometric and
geological parameters—readily available globally—significantly enhances prediction reliability beyond
interpolation-only approaches. This cost-effective methodology enables preliminary seismic hazard assessment in
data-sparse mountainous regions where traditional field surveys are resource-constrained, with applications for
earthquake risk assessment, regional zonation, and building code implementation in developing countries.

Terrain morphometry
Seismic site characterization
Stacked Modelling, Residual Kriging

1. Introduction assessment, yet achieving comprehensive spatial coverage is constrained
by limited field measurements and cost considerations in data-sparse

Predominant frequency (fo) characterization across large seismically regions. In literature, site classification is usually done based on pa-
active regions remains fundamentally important for earthquake hazard rameters quantifying near-surface stiffness — such as shear wave
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velocity, Vs, and the fundamental dynamic response — such as the site's
predominant or natural frequency, fo (Akin et al., 2011). For a one-
dimensional response analysis, these two parameters are related by a
fundamental expression fo = Vs/(4H), where Vs represents the average
shear wave velocity of overlying sediments and H denotes the depth to
seismic bedrock (Kramer and Stewart, 2024). Furthermore, these site
characteristics influence the built environment's response during the
seismic events (Panzera et al., 2018; Brando et al., 2020; Senkaya et al.,
2024). In the microzonation studies, these parameters have been used
either independently or in combination for site classification (Yilar et al.,
2017; Maklad et al., 2020; Abbasnejadfard et al., 2023; Martinez-Segura
et al., 2024; Di Martino et al., 2024). It has been well established in the
earthquake engineering literature that beyond predictor such as Vs30
(shear wave velocity of top 30 m of a site) for characterizing a site's
seismic response, the fo value of the site also plays a critical role as it
directly influences the amplification characteristics of the site (Delgado
et al.,, 2000; Haghshenas et al., 2008; Hassani and Atkinson, 2018;
Senkaya et al., 2024).

For regional-scale microzonation purposes, significant literature
exists for shear wave velocity, Vs30-based site characterization using
remotely sensed data such as Digital Elevation Models (DEMs) and their
derivatives (Allen and Wald, 2009; Mori et al., 2020; Kim et al., 2021;
Geyin and Maurer, 2023; Thakur and Anbazhagan, 2025). Earlier
studies for site characterization using Vs30 relied on relatively simple
DEM parameters such as topographic slope (Allen and Wald, 2009). In
recent studies, more advanced models utilizing different geo-
morphometric, geomorphological predictors and spatial analysis have
been developed for this purpose (Liu et al., 2017; Geyin and Maurer,
2023; Abbasnejadfard et al., 2023; Thakur and Anbazhagan, 2025). The
fo estimation represents a fundamental parameter in seismic site char-
acterization. Past studies have demonstrated that sites typically overlain
with softer sedimentary materials over stronger bedrock are particularly
susceptible to amplification and liquefaction effects during earthquake
events (Lin et al., 2021; Kramer and Stewart, 2024). The primary cause
of this phenomenon is the entrapment and resonance of seismic energy
within the softer surface layer, often leading to devastating effects on
infrastructure above.

The fo is calculated using ground vibration measurements to quantify
this site-specific amplification effect. These vibration measurements,
obtained during earthquake events or from ambient noise recordings,
are processed to calculate Horizontal to Vertical Spectral Ratio (HVSR)
curves, which are then utilized for natural frequency estimation
(Nakamura, 1989; SESAME Project, 2004; Haghshenas et al., 2008). The
HVSR technique has become a standard method in earthquake engi-
neering due to its simplicity and effectiveness in characterizing local site
effects. Past studies have also utilized fo for site characterization relating
it to site class similar to Vs30 as given in Table 1 (Zhao et al., 2006;
Fukushima et al., 2007; JRA, 2019; Laouami, 2020). However, despite
the critical importance of fo in seismic hazard assessment and the proven
success of remote sensing approaches for Vs30 estimation, no compre-
hensive methodologies currently exist for predicting fo at regional scales
for the Himalayan region. This represents a significant gap in the ability
to conduct reliable, cost-effective, regional scale seismic site charac-
terization using fo prediction.

Table 1

Predominant/Natural frequency (fo) based site-classification system proposed in
past studies. For fo— JRA (2019), Zhao et al. (2006), Fukushima et al. (2007), for
Site Class, Vs30 and SPT-N — BSSC (2015).

Site Class Description fo (Hz) Vs30 (m/s) SPT-N
B Rock >5 760-1500 > 50
C Hard soil 2.5-5 360-760 15-50
D Medium soil 1.66-2.5 180-360 <15
E Soft soil < 1.66 <180 -
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1.1. Research objectives

The Himalayan region presents particular challenges for predomi-
nant frequency (fo) -based seismic site characterization due to its
geological complexity, high seismic activity, and rapidly expanding
urban centers. Current approaches rely predominantly on ground-based
measurements that are spatially limited and insufficient for regional-
scale hazard assessment. The availability of high-resolution global
DEM datasets such as SRTM (NASA JPL, 2013) and GLO-30 (European
Space Agency, 2024) provides an opportunity to develop DEM-based
methodologies for comprehensive seismic site characterization. To
predict fo using application of geological information, bedrock depth
data and DEM-based parameters for seismic site characterization, our
study aims to:

1. Establish a comprehensive regional database by systematically
compiling predominant frequency measurements from multiple
published sources across the Himalayan region.

2. Extract and evaluate DEM-derived predictors by developing geo-
morphometric parameters from GLO-30 DEM data (elevation,
slope, curvature, terrain indices) and assessing their predictive
capability for fo estimation along with geological and subsurface
variables.

3. Implement a regression kriging framework integrating stacked
ensemble machine learning with spatial geostatistical modelling to
optimize prediction accuracy across heterogeneous terrain types.

4. Generate high-resolution predominant frequency (fo) maps for three
Himalayan capital regions using the developed framework,
providing regional-scale seismic site characterization.

This study demonstrates the application of satellite-derived topo-
graphic variables combined with geological classifications and bedrock
depth information as predictors for predominant frequency (fo) esti-
mation, contributing to the methodological development of quantitative
remote sensing for seismic site characterization. We implement a two-
stage hybrid framework that integrates stacked ensemble machine
learning with residual kriging to capture both nonlinear terrain-
frequency relationships and spatial autocorrelation patterns. This
approach differs from previous methodologies through its regional-scale
application utilizing a larger dataset across diverse geological settings
rather than basin-specific analyses, its focus on direct fo prediction
rather than indirect Vs30-based inference, and its comprehensive
morphometric analysis from readily available GLO-30 DEM data.

Previous study on fo prediction for the Kathmandu basin found that
geomorphometric secondary variables did not enhance interpolation
accuracy due to limited data availability, with only distance to bedrock
outcrops showing improvement (Trevisani et al., 2021). Our study
demonstrates that morphometric parameters can effectively contribute
to fo prediction when combined with extensive spatial coverage and
advanced ensemble techniques. The methodology is designed for
regional seismic zonation applications where cost-effective satellite-
based assessment is advantageous, though site-specific engineering ap-
plications require field validation. This integrated approach addresses
critical data scarcity constraints in earthquake-prone developing re-
gions, with potential applications extending to other seismically active
areas worldwide.

2. Data
2.1. Existing studies and measurements

We compiled approximately 4400 fo data points from 26 published
studies across the Himalayan region (Table 2). Fig. 1 shows these
measurement sites, which are concentrated in and around major urban
centers, with most located in India, followed by Bangladesh and Nepal.
All these studies used the HVSR technique to determine fo values. The
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Table 2

List of all studies considered for the dataset preparation classified according to
sites' geolocation information (or GI): S1 - sites with reported/known lat and
long values, and S2 — Sites with locations marked on a map.

D Study Tests* GI  Datapoints  Region*
1 Singh et al. (2019) HVSR S1 34 AR
2 DST (2007) HVSR, SPT S1 141 AS
3 Kuldeep et al. (2022) HVSR, ANI S2 54 AS
4 Ansary and Arefin HVSR S1 92 DAC
(2020)
5 Ansary et al. (2022) HVSR S2 580 DAC
6 NCS (2016) HVSR, MASW, S1 511 DL
CS
7 Mundepi et al. (2010) HVSR S2 115 DL
8 Mahajan et al. (2021) HVSR S2 191 HP
9 Kumar et al. (2023) HVSR, MASW S2 44 HP
10 Sandhu et al. (2022) HVSR S1 19 HR
11 Zahoor et al. (2023) HVSR, MASW S2 119 J&K
12 Gupta et al. (2023) HVSR S2 125 J&K
13 Paudyal et al. (2013) HVSR S1 172 NP
14  Chamlagain et al. HVSR S2 48 NP
(2025)
15 Trevisani et al. (2021) HVSR S1 39 NP
16  Gupta and Kumari HVSR S1 194 NI
(2023)
17 Walling et al. (2009) HVSR S1 35 OD
18 Mishra et al. (2020) HVSR S1 52 SK
19 Rahman et al. (2018) HVSR, MASW, S1 167 SYL
SPT
20 Chowdhuri et al. (2011) HVSR, SPT S2 74 TR
21 Shankar et al. (2021a) HVSR, MAM S2 180 UP
22 Shankar et al. (2021b) HVSR S2 75 UP
23 Kundu et al. (2024) HVSR S2 53 UP
24 Kumar et al. (2025) HVSR S1 81 UK
25  Mundepi et al. (2015) HVSR S2 182 UK
26 Nath et al. (2015) HVSR S2 1063 WB

* Abbreviations: HVSR — Horizontal to Vertical Spectral Ratio, MASW —
Multichannel Analysis of Surface Waves, ANI — Ambient Noise Interferometry,
CS - Crosshole Seismic, SPT - Standard Penetration Test. Regions' abbreviations:
Arunachal Pradesh — AR, Assam — AS, Bihar — BR, Dhaka — DAC, Delhi — DL,
Himachal Pradesh - HP, Punjab — PB, Haryana — HR, Jammu and Kashmir - J&K,
Nepal - NP, Northern-India — NI, Odisha — OD, Sikkim - SK, Sylhet — SYL, Tripura
- TR, Uttarakhand - UK, Uttar Pradesh — UP, West Bengal — WB.

data sources varied in their measurement approaches: some studies
recorded ambient vibrations under normal conditions, while others
captured earthquake-induced vibrations during seismic events.

Several studies combined both measurement types. Previous studies
have applied various spatial interpolation techniques to create regional
site characterization maps from their fo measurements. These include
Kriging (Walling et al., 2009; Singh et al., 2019; Trevisani et al., 2021),
Natural Neighbor Interpolation (Kuldeep et al., 2022), Inverse Distance
Weighting (Zahoor et al., 2023), and Nearest Neighborhood Interpola-
tion (Gupta et al., 2023). Additionally, several studies provided Vs30
contour maps for site characterization (DST, 2007; Mundepi et al., 2010;
Kuldeep et al., 2022; Kumar et al., 2023). For studies presenting only
contour maps, we extracted fo values at the original measurement lo-
cations identified in the studies. Since the source studies employed exact
interpolation methods (Kriging, IDW, Natural Neighbor), the interpo-
lated contour values at these measurement points equal the original
observed values. We interpolated representative values from contour
intervals specifically at these georeferenced measurement locations,
ensuring extracted data represents actual field observations rather than
interpolated intermediate points.

Most existing studies have not incorporated geomorphological vari-
ables in their analysis. Trevisani et al. (2021) represents a notable
exception, having incorporated terrain characteristics in their analysis
of the Kathmandu basin. However, they concluded that geo-
morphometric information offered limited benefits for fo prediction due
to insufficient data, except for distance to outcropping bedrock. This
limited exploration of topographic variables suggests potential for
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further investigation of DEM-derived predictors in natural frequency
estimation.

2.2. Georeferencing and data extraction

The compiled studies varied in their spatial data reporting. Some
provided precise geographic coordinates, while others presented mea-
surement locations only through maps with marked points (S1 and S2,
respectively, in Table 2). For the latter category, we applied systematic
georeferencing procedures following established protocols (Yao Xiao-
bai, 2020). Our georeferencing process involved three key steps. First,
we identified Ground Control Points (GCPs) on published maps using
recognizable features. Second, we registered these points to standard
coordinate systems using geographic information systems. Third, we
verified accuracy by cross-checking multiple reference features,
including rivers, lakes, major roads, railways, administrative bound-
aries, and urban development patterns. The georeferencing procedure
was performed in QGIS (QGIS Development Team, 2023) environment.
The detailed methodology of this procedure is explained in Thakur and
Anbazhagan (2025).

For fo value extraction, we employed two methods based on the data
format. Studies with tabulated coordinates allowed direct extraction of
fo values. For studies presenting only contour maps, we interpolated
representative values from contour intervals at each measurement
location. This systematic approach ensures consistent data quality across
all sources, providing a robust dataset for developing and validating our
DEM-based prediction methodology.

2.3. fo Dataset features

Fig. 2 shows the distribution of fo data points across 4440 sites in the
final dataset from the Himalayan region and Indo-Gangetic Plains. Based
on the JRA (2019) criteria (Table 1), most sites fall within the Soft soil
category (Site Class E — 3395 sites), followed by Medium soil (Site Class
D - 356 sites) and Hard soil (Site Class C — 335 sites). Compared to sites
in soil categories, relatively few sites have fo values that fall under the
Rock category (Site Class B — 354 sites).

The spatial distribution of fo values (Fig. 1) reflects distinct regional
geological controls. Low-frequency sites are concentrated in deep
sediment-filled areas, including Dhaka, Delhi's Yamuna floodplain,
Kolkata's deltaic region, and areas near the Brahmaputra River around
Guwahati, where thick alluvial deposits can amplify longer-period
seismic waves. High-frequency sites occur at locations with shallow
bedrock or stiff soils, found both at elevated areas within these same
cities and in Himalayan settings such as the Kangra Valley foothills and
steep terrain locations. This pattern demonstrates the fundamental
control of subsurface geology and topography on seismic site response
across the Indo-Gangetic Plains and Himalayan foreland.

2.4. GLO-30 DEM, bedrock depth and geological dataset

In the present study, we have used the GLO-30 Digital Elevation
Model (DEM) for fo predictions. The Copernicus GLO-30 DEM, derived
from TanDEM-X bistatic SAR interferometry (2010-2016), provides
global 30-m resolution topographic data with ~2 m relative vertical
accuracy and ~ 4 m absolute vertical accuracy, representing a signifi-
cant improvement over legacy DEMs for seismic applications (Wessel
et al.,, 2018). We employed GLO-30 DEM and its morphometric de-
rivatives to enhance our fo prediction models for seismic site charac-
terization. The dataset's 30-m resolution supports multi-scale terrain
analysis, capturing local site effects and regional geological controls on
natural frequency that complement traditional Vs30-based site classifi-
cation schemes (Geyin and Maurer, 2023). GLO-30's enhanced detection
of sedimentary basins, where fo is expected to correlate strongly with
basin geometry and sediment thickness, combined with its limited
vegetation penetration capability for identifying surface structure
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Fig. 1. Main Map: Final Predominant/Natural Frequency (fo) datapoints (see legend at top right) obtained for different locations in the Himalayan region using the
geolocation data from reports, published articles and the metric georeferencing procedure. The DEM used as a base layer in the main map for Hillshade and Elevation
profile (see legend at bottom left) has a resolution of 50 m. Jagged lines on the main map are contour lines at a 50 m interval. Insets: Numbers in inset maps are the

locations marked on the main map.
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Fig. 2. Histogram of all the datapoints collected from the past studies as listed
in Table 2. Vertical lines show the class boundaries as described in Table 1.

information, provides an opportunity for fo prediction across diverse
geological settings. Fig. 3 (a) and (b) show the variation of fo values for

the site locations as shown in Fig. 1, with respect to elevation (in meters)
and slope (in percentage). The site's elevation and slope values in the
figure correspond to a resampled raster with a resolution of 50 m x 50 m
using the GLO-30 DEM.

Bedrock depth data were obtained from the global depth-to-bedrock
dataset developed by Shangguan et al. (2017), which provides
comprehensive spatial coverage at 250 m resolution. This dataset was
constructed using machine learning algorithms (Random Forest and
Gradient Boosting Tree) applied to approximately 1.3 million soil profile
locations and 1.6 million borehole locations worldwide, along with 155
environmental covariates including DEM-based morphological de-
rivatives, lithologic units, and MODIS surface reflectance data. The
dataset represents the most comprehensive global compilation of
bedrock depth information available for seismic site characterization
studies, providing the fundamental geological constraint necessary for
natural frequency prediction in this study. Fig. 3 (c) shows the variation
of fo values with respect to the bedrock depth values obtained from the
Shangguan et al. (2017) dataset. Bedrock values obtained from the
dataset for the sites shown in Fig. 1 range between 0 and 4500 m.

The geological classification data for the present study were derived
from Wandrey (1998), which provides a comprehensive digital geologic
map of South Asia developed under the U.S. Geological Survey World
Energy Project (also see Thakur and Anbazhagan, 2025). This dataset
encompasses Afghanistan, Bangladesh, Bhutan, India, Myanmar, Nepal,
Pakistan, and Sri Lanka, compiled from numerous UNESCO geological
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Fig. 3. Scatter plots for the catalogued dataset's sites' Predominant Frequency
(fo) values with respect to (a) Elevation (m), (b) Slope (%), (c) Bedrock Depth
(m). The colour ramp shows parameter values for the same locations. The
elevation and slope values for the sites correspond to a resampled raster with a
resolution of 50 m x 50 m using the GLO-30 DEM. Bedrock depth values
correspond to a 250 m resolution raster using the global bedrock depth map by
Shangguan et al., 2017.

maps and national geological surveys at scales ranging from 1:500,000
to 1:10,000,000. The geological units are systematically classified ac-
cording to the World Energy Project standard, incorporating geologic
age and general lithologic characteristics, with attributes including
stratigraphic units and regional geological contacts. Based on this
dataset, most of the sites in the present study fall in the ‘Quaternary
sediments (Q)’ category per the dataset. Fig. 4 shows the proportion of
different geological classes (top 6) for the fo sites as a percentage of all
sites. In this, categories such as ‘undivided Precambrian Rocks (pC)’ and
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Fig. 4. Proportion of different geological classes for the fo site locations as a
percentage of the total data points. Here, Q — Quaternary sediments, pC — un-
divided Precambrian rocks, Pz — Undifferentiated Paleozoic rocks, N — Neogene
sedimentary rocks, Mi — Mesozoic intrusive rocks, MzPz — Paleozoic and
Mesozoic metamorphic rocks.

‘undifferentiated Paleozoic rocks (Pz)’ were most prevalent after the
Quaternary sediment category.

3. Methodology

We have adopted regression kriging to prepare fo maps (Hengl et al.,
2007; Hengl and MacMillan, 2019). This approach combines the
deterministic and stochastic parts of spatial variation for the final pre-
diction for a location sy given as:

Zpred (SO) = Mpred (SO) + €pred (SO) (@)

here zpred(so) is the final predicted value at a new location so, Mpred(s,)
is the prediction from the Machine Learning (ML) model, and epeq(so) is
the interpolated residual for the location using residual kriging. At the
first stage, an ML model is developed to predict the fo using different
predictors. This stage implements stacked ensemble learning, where
multiple base models are trained on extracted features. The best-
performing models' predictions were combined to develop a stacked
ML model. At the second stage, the stacked model's residuals are
spatially interpolated using ordinary kriging. The results from kriging
are used to update the model's prediction values around a sampled point.

In the next sections, we explain the following steps: model prediction
parameters and their extraction, ML model selection for prediction, and
the residual kriging procedure adopted for the final predictions. The
regression kriging procedure for natural frequency prediction in seismic
site characterization employs a two-stage methodology that integrates
machine learning ensemble techniques with spatial geostatistics. This
approach aims to effectively capture nonlinear terrain-frequency re-
lationships and residual spatial correlation patterns that persist after
initial modelling. The stacked ML model development was done in
MATLAB (2023), kriging was performed in R (R Core Team, 2024) using
gstat package (Pebesma, 2004), and the predictors extraction, fo site
characterization maps preparation was done in a GIS environment.

3.1. Model prediction parameters and their extraction

Twenty predictor variables were selected for fo prediction ML model
development, comprising seventeen continuous terrain morphometric
parameters and three categorical geological classifications (Table 3 and
Fig. 5). Of the twenty predictors considered for the fo prediction model,
17 are continuous and three are categorical. The continuous variables
include six topographic parameters — (Abbasnejadfard et al., 2023)
Elevation, (Akin et al., 2011) Slope, (Allen and Wald, 2009) Profile
curvature, (Amatulli et al., 2018) Plan curvature, (Ansary and Arefin,
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Table 3

A list of all the parameters/predictors used for the predominant Frequency (fo)
prediction. Ranges of parameters correspond to the resampled GLO-30 DEM at a
50 m resolution. Here C_V — Categorical Variable.

ID  Variable Abbrev. Units Range Reference
Study
Geometric Predictors
1 Elevation Elev m 0 to 3380 -
2 Bedrock Depth BD m 0 to 4453 -
Topographic Predictors
3 Slope Slop % 0to 122.7 -
4 Topographic TPIL m —24.3 to Jenness
Position Index 17.93 (2006)
5 Terrain Ruggedness TRI m 0to 44 Riley et al.
Index (1999)
6 Vector Ruggedness VRM - 0 to Sappington
Measure 0.0846 et al. (2007)
7 Roughness Rough m 0 to
154.33
Geological Predictors
8 Geology Geol CV - -
Curvature Predictors
—0.0084
S -1
9 Profile Curvature Prof Curv m t0 0.0077
—3.275to
-1
10  Plan Curvature Plan_Curv m 0.935 Mindr et al.
_ 0 to (2020)
11  Total Total !
otal Curvature otal_Curv m 0.00018
Tangential 1 —0.012 to
12 Curvature Tang Curv m 0.011
Hydrological Predictors
Nearest distance to . 0 to
13 the river DistR m 4670.1 -
Topographic 8.42 to Sorensen et al.
14 Wetness Index wi B 18.42 (2006)
Basin Geometry Predictors
Nearest distance to . 0to
15 basin boundary Dist.B m 6232.7 B
Geomorphometric Predictors
16 Morphometric MF cv 1t06 B
Feature
Jasiewicz and
17 Geomorphons GM CV 1to10 Stepinski
(2013)
Multiresolution Gallant and
2.6E-14 t
18  Index of Valley MRVEBF - 499 ® Dowling
Bottom Flatness : (2003)
Multlresoh‘ltlon 4E-15 to Gullm‘n and
19  Index of Ridge Top MRRTF - 6.98 Dowling
Flatness : (2003)
Morph i
g0  Morphometric MPI ~ 0100472 -

Protection Index

2020) Total curvature, and (Ansary et al., 2022) Tangential curvature;
six terrain analysis indices — (Brando et al., 2020) Topographic Position
Index (TPI), (Breiman, 1996) Terrain Ruggedness Index (TRI), (BSSC,
2015) Topographic Wetness Index (TWI), (Chamlagain et al., 2025)
Vector Ruggedness Measure (VRM), (Chen et al., 2024) surface rough-
ness, and (Chowdhuri et al., 2011) Morphometric Protection Index
(MPI); two landform characteristics (Gallant and Dowling, 2003) —
(Delgado et al., 2000) Multiresolution Valley Bottom Flatness (MRVBF)
and (Di Martino et al., 2024) Multiresolution Ridge Top Flatness
(MRRTF); two distance-based parameters — (Dong and Shan, 2013)
distance to nearest basin boundary and (DST, 2007) distance to nearest
river; and one critical subsurface parameter — (European Space Agency,
2024) bedrock depth. The categorical variables include (Freund and
Schapire, 1997) Geological formation type, (Fukushima et al., 2007)
Geomorphons landform classification, GM, and (Gallant and Dowling,
2003) Morphometric features classification, MF.

These predictors were calculated using the DEM layer, bedrock depth
layer, and geological layers. The terrain morphometric parameters were
derived from the GLO-30 DEM using established geomorphometric
analysis techniques in a GIS environment (Amatulli et al., 2018). The
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distance-based predictors were calculated using a river network layer
and basin boundary layer for the Himalayan region from HydroSHEDS
database (Lehner and Grill, 2013). Distance variables were calculated in
the GIS to determine proximity to basin boundaries and drainage net-
works that can influence sediment deposition and site response
characteristics.

These variables were selected based on their theoretical and poten-
tial relationships to the fundamental 1D site response equation fo = Vs/
(4H) (Kramer and Stewart, 2024), where bedrock depth directly repre-
sents the impedance contrast parameter H, while topographic and
geological variables serve as proxies for velocity structure (Vs) and local
site effects (Zhao et al., 2006). The combination of the subsurface pa-
rameters (such as bedrock depth and geology) and DEM-based terrain
characteristics provides comprehensive coverage of factors controlling
fo variations across diverse geological environments.

Next, a correlation analysis was done on the extracted predictors.
The analysis was conducted on a filtered dataset of 3970 observations
(89.4 % retention rate) comprising 31 predictor variables: 17 continuous
variables and 14 categorical dummy variables representing the top 6
geological formations (98.4 % coverage), top 4 morphological features
(99.2 % coverage), and top 7 Geomorphons (91.3 % coverage). This was
done to enhance visualization clarity. Categorical variables were filtered
to retain only the most frequent categories, reducing matrix over-
crowding while maintaining high data representation and excluding
rare categories with significantly smaller sample sizes. The 465 corre-
lations were distributed as strong (|r| > 0.5): 30 correlations, moderate
(0.3 < |r| £ 0.5): 45 correlations, and weak (|r| < 0.3): 390 correlations.
In geological categories, Quaternary deposits (Geol Q in Fig. 6) showed
the strongest topographic associations with negative correlations to
elevation (r = —0.676) and positive correlations to valley bottom flat-
ness (MRVBF, r = 0.781), indicating preferential occurrence in low-lying
terrain. Precambrian rocks (Geol_pC in Fig. 6) demonstrated contrasting
patterns with positive correlations to elevation (r = 0.413) and negative
correlations to valley bottom flatness (MRVBF, r = —0.586), suggesting
occurrence in elevated terrain. Morphological features and Geo-
morphons showed moderate correlations with topographic variables,
notably MF_3 with topographic position index (TPL, r = —0.422) and
Geomorphons GM_3 with TPI (r = 0.414). The systematic correlation
patterns validate the inclusion of these categorical predictors in the
present study.

3.2. Dataset partitioning scheme and workflow

For the implementation of regression kriging and to obtain unbiased
residuals for the kriging step while incorporating stacked models (SMs)
for prediction, we used the following data partitioning and model-
building scheme (also see Fig. 7):

1. Initial Data Partitioning: The complete dataset was divided using 5-
fold cross-validation, creating five folds — FN1, ..., FN5 (Fig. 7).
For each fold FNi, the remaining four folds formed the training set
(D_i) and fold FNi became the test set (Te_i).

2. Training Set Subdivision: Each training set D_i was further split into:

- Training subset (Tr_i): 85 % of D_i for base model training.
- Validation subset (Va_i): 15 % of D_i for meta-learner training

3. Base Model Training: For each Tr_i, multiple base models were trained
using 5-fold cross-validation within Tr i to prevent overfitting.

4. Base Model Selection: Base models were evaluated on Va_i using
RMSE, MAE and R? (Table 4). The top two performing models were
selected for each stacked model SM_i.

5. Meta-learner/ Stacked Model Training: The predictions from the two
selected base models on Va_i were used as features to train a stacked
model for SM_i. For this stage a number of model types were trained
and best performing was selected for SM_i.

6. Final Predictions: Each stacked model SM_i generated predictions on
its corresponding test set Te_i.
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Fig. 5. Maps of predictors considered in the present study at a 1 km resolution for the region of interest spanning India, Nepal, Bangladesh and Bhutan.
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Fig. 5. (continued).

7. Residual Calculation: Residuals were calculated as (observed - pre-
dicted) for each test point. Since each data point appears in exactly
one test set, this ensured unbiased residuals.

8. Kriging: The combined residuals from all test sets were used for
spatial kriging to capture the remaining spatial correlation.

For the site characterization maps preparation, the average of all
stacked models' predictions was used for prediction on a new location
with known/extracted values of predictors.

3.3. First stage — Building stacked ensemble model

For the stacked ensemble construction, we began with a compre-
hensive evaluation of multiple machine learning algorithms to identify
optimal base models for each cross-validation fold. Following the data
partitioning scheme outlined in Section 3.2, we systematically tested
different algorithm families, including ensemble methods, Neural net-
works, Gaussian Process Regression (GPR), Linear regression models,
and Support Vector Machines (SVM). Each algorithm was evaluated
using 5-fold cross-validation within the training subset to ensure robust
performance assessment while preventing overfitting.

For base model evaluation we employed Root Mean Square Error
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Fig. 6. Correlation matrix of all predictors for Predominant Frequency (fo),
showing relationships between geomorphometric parameters, geological for-
mations (Geol ), morphological features (MF_), and Geomorphons' types (GM_).
Variables are clustered by similarity using hierarchical clustering.

Model ID Fold Number (FN)
SM5 [Te_5] | - Fns
SM_4 | [Te 4] | — Fna
sM.3 | [Te 3] | > Fn3
SM_2 | [Te 2] | > FN2
SM_1 | D 1 [Te 1] — FN1

v Y

\ Tr_1 [va1]

%(_/‘\“{_I

Training Set for base Training Set for
models of SM_1 SM_1

Fig. 7. Dataset partitioning scheme adopted in the present study. SM_i is the
stacked model for Fold Number (FN) i.

Table 4
List of performance measures calculated and used for the two stages of model
building.

Model Performance Measure Formula*

Stage — 1. Stacked Ensemble Model

Root Mean Square Error (RMSE 1 n 2
q (RMSE) RMSE =/~ 3" (v~ )

MAE = Z?,l i =i
Xk (s *yi)z
i i-y)?

Mean Absolute Error (MAE)

Coefficient of Determination (R?) R =1

Stage — 2. Residual Kriging

Residual Sum of Squares (RSS) RSS — Zml [ympiﬂm (h) — madd(hi)]z
i=

RSS
Akaike Information Criterion (AIC) AIC =nx In (T) + 2k

* Notations: n — number of data points, y; — observed value for the ith data-
point, y — predicted value for the ith datapoint, y - mean value of the observa-
tions, m — number of lag classes, k — number of model parameters.

(RMSE), Mean Absolute Error (MAE), and coefficient of determination
(Rz) as primary selection criteria (Table 4). The evaluation process
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prioritized prediction accuracy and algorithmic diversity to ensure
complementary error patterns in the final ensemble. Multiple ML algo-
rithms were evaluated for base model selection, with hyperparameters
optimized using Bayesian optimization. During hyperparameter opti-
mization, fifty trials were evaluated for each model, with the RMSE
being minimized. Algorithm-specific parameters were systematically
tuned: ensemble parameters (learning cycles, learning rate, minimum
leaf size), Gaussian process parameters (kernel functions and hyper-
parameters), and support vector machine parameters (regularization
and kernel scale). Performance evaluation using cross-validation metrics
(Table 4) was done to identify the top two algorithms per fold for the
stacked ensemble framework.

The selected base models' interpretability was assessed using SHAP
values (Lundberg and Lee, 2017), which decompose each natural fre-
quency prediction into individual predictor contributions relative to the
model baseline. Shapley values quantify how terrain morphometry
(curvature, elevation) and subsurface properties (bedrock depth, geol-
ogy) influence site-specific predictions, with magnitude indicating
impact strength and sign showing directional effect. Mean Shapley
values reveal which terrain and subsurface features most strongly con-
trol fo predictions in our seismic site characterization models. Feature
importance plots were generated for the base models to ensure robust
interpretability and validate consistency with seismic site character-
ization principles.

Our algorithm selection was guided by established principles in
seismic site characterization modelling. Tree-based ensemble methods
(bagged and boosted trees) were prioritized due to their demonstrated
effectiveness in capturing complex, nonlinear relationships between
terrain morphometry and geophysical site parameters (Geyin and
Maurer, 2023; Thakur and Anbazhagan, 2025). These methods inher-
ently handle mixed-type predictors (continuous morphometric param-
eters and categorical geological classifications) without requiring
explicit interaction term specification and are robust to the multi-scale
input data integration characteristic of regional geophysical model-
ling. Gaussian Process Regression was evaluated for its ability to model
spatial correlations and provide uncertainty estimates, while Support
Vector Machines were tested for their capacity to identify complex de-
cision boundaries in high-dimensional feature spaces.

To improve the robustness of the prediction, as discussed, we have
used model stacking in the first stage. Model stacking is an ensemble
learning technique that combines multiple diverse base models through
a meta-learner to achieve better predictions than any individual model
(Vilalta and Drissi, 2002). Prevalent methods for model stacking are
bagging (Breiman, 1996), random forest (Ho, 1995), and boosting
(Freund and Schapire, 1997). It works in the following stages: first, base
models are trained on the dataset (Tr_i) using cross-validation to avoid
overfitting. Next prediction on a test set (here Va_i) was then done using
these base models to generate out-of-fold predictions. Then, a meta-
learner/ stacked model is trained to combine these base model pre-
dictions optimally. The stacked model learns the best way to weight and
combine the base models' outputs, leveraging their different strengths
and compensating for individual weaknesses. This approach prevents
overfitting through cross-validation and reduces bias and variance,
resulting in more robust predictions than simple averaging or any single
model alone.

3.4. Second stage — Residuals' Kriging

Following the initial stacked machine learning prediction, residual
kriging was employed as the second stage to capture and model spatial
autocorrelation in prediction residuals (Hengl and MacMillan, 2019). In
the second stage, we applied ordinary kriging to the unbiased residuals
(e) given as:

€(S1) = y(Si) — ym(S) 2
where y(S;) and ypmi(S) represent observed and ML predicted fo
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values for the site S;, respectively. Residuals from the stacked ML model
(n = 4440) were examined for spatial structure using variogram anal-
ysis. The spatial correlation structure of these residuals is characterized
through empirical variogram analysis. The empirical variogram was
computed using the method of moments estimator:

N(h)
110 = gy 2 [(200) ~ 205407 ®
where y(h) is the semivariance at lag distance h, N(h) is the number
of point pairs separated by distance h, and Z(x;) represents the residual
values (Hengl and MacMillan, 2019). For the variogram, a maximum lag
distance (cutoff) of 15,000 m was applied to focus on the relevant spatial
scale, with lag intervals of 500 m to ensure adequate point pairs per bin.
Theoretical variogram models were fitted to capture fo variability.
Eight theoretical variogram models were evaluated, including simple
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models (Nugget, Spherical, Exponential, Gaussian, Matérn, and Linear)
and nested model combinations (Spherical+Nugget and Expo-
nential+Nugget). Anisotropy was assessed by computing directional
variograms at four principal directions: 0° (East-West), 45° (Northeast-
Southwest), 90° (North-South), and 135° (Northwest-Southeast), each
with a tolerance angle of +£22.5°. Model selection was based on Residual
Sum of Squares (RSS) and Akaike Information Criterion (AIC) as given in
Table 4; and visual inspection of model fit to empirical variogram. The
geostatistical analysis was performed using the gstat package in R
(Pebesma, 2004).

Ordinary kriging of residuals was performed using the best-
performing variogram model. Spatial interpolation of natural fre-
quency residuals was conducted using a two-stage approach combining
kriging with K-nearest neighbours (KNN) gap filling on a 50-m resolu-
tion grid covering different regions. The primary kriging stage involved
converting global residuals to spatial objects using UTM coordinates,

/ fo Dataset

DEM Derived Parameters

Bedrock Depth,\
Geological Maps

- Correlation
. Matrix

Variable Transformations

— Log Transform

— Standardization

— Box-Cox Transformation
— One-hot Encoding

4

Machine Learning Block

Stacked Models
Predicted

Residual Kriging Block

Base Stacked Models .
Models o Variogram Model
FN5 / B Fold
FN4 / O Residuals
FN3
FN2 > | SM_3
FN1 \ P
BM1| | BM2 \
SM_1
m

Residual ‘
Kriging /-~

‘ Final Maps I<I Base Maps K<: Regression Kriging g‘ Preprocessing ‘m

Fig. 8. Workflow showing the steps followed in the present study for the Predominant Frequency (fo) prediction for seismic site characterization.
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with training data selected within a 30-km buffer around the region grid
to ensure adequate local representation. The search parameters were
selected to ensure adequate local data representation while maintaining
computational tractability for the high-resolution grid. The secondary
gap-filling stage addressed locations where ordinary kriging could not
produce predictions due to insufficient local data density or extreme
spatial configurations. This stage employed K-nearest neighbours
interpolation using four nearest valid predictions through simple
averaging.

3.5. Map preparation

Fig. 8 shows the workflow followed in the present study for the final
site characterization maps for fo. The present study's two-stage approach
combines the strength of machine learning algorithms in capturing
complex nonlinear relationships with geostatistical methods' ability to
model spatial dependencies (Hengl and MacMillan, 2019; Geyin and
Maurer, 2023). We used average values obtained from the five stacked
ML models for the final map preparation. The ML models' predictions
and the residual kriging were combined to get the final fo-based seismic
site characterization maps.

For the final map preparation for major capital regions in the region,
we have chosen a 50 m resolution. The 50 m output grid spacing enables
visualization of local topographic variations captured by the GLO-30
DEM and facilitates integration with standard urban planning data-
sets. However, the effective prediction resolution is constrained by the
coarsest input variable — the 250 m bedrock depth dataset. The 50 m
visualization grid should not be interpreted as implying corresponding
precision in fo predictions at that scale. The 50 m grid facilitates visu-
alization of terrain-controlled patterns but predictions remain most
reliable at regional scales. Site-specific fo values will require field vali-
dation, particularly where complex local geology or anthropogenic
modifications are not captured by regional predictors.

4. Results and discussion
4.1. Stacked ensemble model's performance evaluation

4.1.1. Base models

Table 5 presents performance metrics for the base models selected
for each cross-validation fold (FN1 through FN5). The base models were
developed for log-transformed fo. The model screening phase evaluated
multiple algorithm types, including ensemble methods, Gaussian pro-
cess regression (GPR), various tree-based models, and support vector
machines (SVMs). From this comprehensive evaluation, the selection
process consistently identified bagged ensembles as the first base model

Table 5
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(BM1) and boosted ensembles as the second base model (BM2) across all
five folds. Despite testing diverse algorithm families, this uniform se-
lection outcome indicated that tree-based ensemble methods most
effectively captured the nonlinear relationships in the fo prediction.

The results show that bagged ensembles achieved validation RMSE
values of 0.609-0.637 and test RMSE of 0.593-0.636, while boosted
ensembles showed validation RMSE of 0.636-0.655 and test RMSE of
0.633-0.662 (Table 5). The corresponding R? values averaged 0.507 for
bagged models and 0.471 for boosted models on validation sets, with
test R? values of 0.537 and 0.494, respectively. These results demon-
strated that bagged ensembles consistently outperformed their boosted
counterparts with lower prediction errors and higher explained vari-
ance. The small differences observed between validation and test per-
formance suggested adequate generalization capability. Notably, FN3-
BM1 improved from validation (RMSE = 0.630) to test (RMSE =
0.593), achieving the best test performance among all base models with
R? = 0.585. The analysis of mean absolute error values, which ranged
from 0.414 to 0.432 for bagged models and 0.459 to 0.479 for boosted
models, yielded MAE/RMSE ratios of approximately 0.68-0.73, indi-
cating consistent error distributions without excessive outlier influence.

The exclusive selection of bagged and boosted ensembles from the
broader pool of tested algorithms highlighted their relatively better
performance for our application. The systematic pairing of these two
ensembles reflected their complementary characteristics: bagged en-
sembles reduce variance through bootstrap aggregation, while boosted
ensembles reduce bias through sequential error correction. This
complementarity supported their combination through stacked model,
as each method addressed different sources of prediction error. The
observed performance consistency across folds demonstrated stable
predictions despite training data variations. The moderate R? values
obtained indicated that while the models captured meaningful variance,
substantial unexplained variation remained. These results justified the
subsequent application of spatial interpolation techniques to capture
localized effects not represented in the predictor variables. The domi-
nance of ensemble methods for our present dataset over other tested
algorithms suggests that the complexity and non-linearity of fo predic-
tion require the flexibility of tree-based approaches.

Figs. 9 and 10 provide the plots of the quantitative performance
assessment obtained from the base model selection process. Fig. 9 dis-
plays the predicted versus observed value plots for the best-performing
base models (FNi-BM1 and FNi-BM2), where the scatter of points rela-
tive to the diagonal line reflects the models' predictive accuracy on their
respective test sets. The distribution pattern shows that the bagged and
boosted ensemble methods capture the underlying relationships be-
tween DEM-derived morphometric parameters and fo measurements.
Fig. 10 presents the residual plots for these same models, revealing the

Results of all stacked models (SMs) and their corresponding base models (BMs) using performance measures listed in Table 4 for validation (V) and test (T) sets. These
results are in natural log units. Here, FNi — Fold Number i, SM_i — Stacked Model i, SVM - Support Vector Machines.

Stacked Model ID Base Model ID Model Type RMSE R? MAE RMSE R? MAE
(W] (W] (W) (€] M (M
SM_1 Linear Regression 0.621 0.538 0.418 0.633 0.508 0.434
FN1-BM1 Bagged Ensemble 0.609 0.529 0.414 0.636 0.503 0.437
FN1-BM2 Boosted Ensemble 0.639 0.483 0.459 0.656 0.471 0.482
SM_2 Linear SVM 0.627 0.539 0.421 0.622 0.517 0.416
FN2-BM1 Bagged Ensemble 0.637 0.487 0.431 0.629 0.534 0.420
FN2-BM2 Boosted Ensemble 0.654 0.46 0.479 0.662 0.484 0.479
SM_3 Robust Linear 0.588 0.595 0.402 0.587 0.553 0.401
FN3-BM1 Bagged Ensemble 0.630 0.505 0.432 0.593 0.585 0.401
FN3-BM2 Boosted Ensemble 0.655 0.464 0.471 0.633 0.527 0.451
SM_4 Linear Regression 0.617 0.542 0.420 0.608 0.509 0.418
FN4-BM1 Bagged Ensemble 0.624 0.519 0.428 0.620 0.537 0.426
FN4-BM2 Boosted Ensemble 0.655 0.469 0.470 0.650 0.491 0.465
SM_5 Linear Regression 0.625 0.541 0.414 0.626 0.540 0.417
FN5-BM1 Bagged Ensemble 0.614 0.515 0.419 0.632 0.528 0.414
FN5-BM2 Boosted Ensemble 0.636 0.478 0.460 0.653 0.497 0.469
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Fig. 9. Test set's predicted vs observed values plots for a particular fold number FNi (i €[1,5]) for their two best-performing base models — BM1 in (a), (c), (e), (g),
and (i); and BM2 in (b), (d), (f), (h), and (j). Here, the test set is Va_i for a particular fold i and the values are in natural log units.

distribution of prediction errors across the range of fitted values. The
residual patterns indicate no systematic bias exists in the model pre-
dictions. These figures substantiate the performance metrics showing
RMSE values between 0.593 and 0.662 for the selected base models and
R? values ranging from 0.471 to 0.585.

4.1.2. Stacked models
The performance metrics for the five stacked ensemble models (SM_1

12

through SM_5), each developed using their respective cross-validation
folds, are presented in Table 5. Each stacked model incorporates two
optimally selected base models identified through model screening, with
the meta-learner combining their predictions to enhance robustness and
generalization capability. Linear regression appeared in 3 of the five
base learner positions, while linear support vector machines and robust
linear regression appeared only in SM_2 and SM_3, respectively. The
meta-learners (bagged and boosted ensembles) combine the log-
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Fig. 9. (continued).

transformed base model predictions, which ensure positive predictions
after back-transformation.

Validation sets' performance showed RMSE values ranging from
0.588 to 0.627 in log units and R? values between 0.538 and 0.595. Test
sets' performance yielded RMSE values between 0.587 and 0.633 and R?
values from 0.509 to 0.553. The small difference between validation and
test performance of the stacked models indicates limited overfitting. The
final prediction methodology averages all five stacked models to
improve robustness. Averaging models trained on different data subsets
reduces prediction variance by approximately 1/ \/ 5. Each fold covers
slightly different spatial and geological characteristics, so averaging
mitigates fold-specific biases. The stacked ensemble approach provides
stable natural frequency predictions for spatial interpolation and oper-
ational use. While individual base models sometimes achieved lower
error rates, the ensemble framework here offers prediction stability.

Fig. 11 shows the prediction and observed value plots for the stacked
models' on their respective test folds (Te_i in Fig. 7). These shows
consistently scatter around the diagonal 1:1 line. Fig. 12 shows the re-
siduals variation against predicted values corresponding to the data
points in Fig. 11. These residual values show the random scatter around
the x - axis indicating no systematic bias in the stacked models'
predictions.

4.2. Feature importance analysis

To understand the impact of different predictors we conducted a
variable importance analysis. The Shapley Importance analysis (see
Fig. 13) shows that terrain morphometric parameters and geological

13

classifications dominated natural frequency prediction. Multiresolution
Valley Bottom Flatness (MRVBF) emerged as the most important pre-
dictor (Shapley value: ~ 0.18), reflecting the critical role of sediment
accumulation zones in controlling site response characteristics. Valley
bottom areas systematically correspond to deeper sedimentary deposits
with strong impedance contrasts which correlate well with low fo values
(Kramer and Stewart, 2024).

Undivided Precambrian rocks (pC) ranked second in importance
(Shapley value: ~ 0.17), demonstrating the fundamental influence of
crystalline basement geology on fo characteristics. Precambrian forma-
tions typically comprise high-velocity crystalline rocks (granites,
gneisses, metamorphic complexes) that create strong impedance con-
trasts with overlying sediments and exhibit distinctly different seismic
response characteristics compared to younger geological formations
(Zhao et al., 2006).

Elevation lies in the top three positions in all the model results
(Shapley value: ~ 0.15), confirming its role as a fundamental proxy for
structural position and geological context. Higher elevations often
correspond to areas where Precambrian basement approaches the sur-
face or where structural uplift has exposed older, more competent
geological formations with elevated predominant frequencies. Multi-
resolution Ridge Top Flatness (MRRTF) and bedrock depth (BD)
exhibited similar moderate importance levels (Shapley values: ~ 0.04
and ~ 0.03, respectively). The relatively modest importance of bedrock
depth data suggests that the combination of depositional environment
identification and basement rock presence effectively captures the pri-
mary controls on impedance contrast variations.

Secondary importance variables, including Morphometric Protection
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Fig. 10. Test set's residual plots for a particular fold number FNi (i €[1,5]) for their two best-performing base models — BM1 in (a), (c), (e), (g), and (i); and BM2 in
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Fig. 11. Prediction vs observed value plots for stacked models (SM_i) on their respective test sets (Te_i), where i €[1,5]. These values are in natural log units.

Index (~ 0.03), surface roughness (~ 0.03), and slope (~ 0.025),
contributed meaningful but limited predictive power through their
representation of local topographic complexity and erosional-
depositional processes. Notably, traditional curvature parameters,
including profile curvature, plan curvature, and tangential curvature
exhibited relatively low importance (< 0.01), indicating significantly
less contribution to fo prediction in this geological context. The impor-
tance hierarchy demonstrates that sediment accumulation zone identi-
fication and Precambrian basement rock presence provide the primary
predictive capability, reflecting the fundamental control of depositional
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processes and basement geology on seismic site response characteristics.

4.3. Residuals, Variogram and Kriging results

4.3.1. SEMs residuals

Utilizing the five stacked models' predictions on their respective test
sets (Te_i) of size n = 888, we calculated unbiased residuals for all the
locations. A summary of the statistics of these residuals is given in
Table 6.

The ML model residuals ranged from —2.48 to 3.15 units with a mean



H. Thakur and P. Anbazhagan

21— o

Residuals

By - .
2 Linear Regression

-1 0 1 2 3
Predicted Value

(a)

Residuals

AR

%  8Robust Linear

-1 0 1 2 3
Predicted Value

(©)

Residuals
o

N
Ll v V(7sLir‘lear Regression
-1 0 1 2

Predicted Value

(e)

Engineering Geology 362 (2026) 108541

Residuals

Linear SVM
[N
2 3
Predicted Value

(b)

Residuals
o -

1
-

'
N

2 3

-1 0
Predicted Value

Fig. 12. Residual plots for stacked models (SM_i) on their respective test sets (Te_i), where i €[1,5]. These residuals were used for the kriging procedure, and their

values are in natural log units.

of 0.010 £ 0.616 units (mean + standard deviation), indicating that the
stacked ML model achieved near-zero bias with moderate variability
suitable for spatial analysis (Table 6). The empirical variogram was
calculated using 30 lag classes with a maximum lag distance of 14,748
m, revealing clear spatial structure in the residuals with semivariance
increasing systematically from short to intermediate distances before
stabilizing at longer lags, showing the presence of spatial autocorrela-
tion and has been incorporated in the prediction model using residual
kriging as the second modelling stage. Directional variogram analysis
was also conducted which showed isotropic spatial structure with no
significant directional effects. Based on this, we use the omnidirectional
variogram without incorporating anisotropic corrections.

The exponential, Matérn, and exponential+nugget models achieved
nearly identical optimal fits (RSS differences <0.000001, Table 7), with
the exponential model selected for its simplicity and parsimony while
maintaining identical performance metrics. Following the principle of
model parsimony, the simpler exponential model was preferred, as it
requires fewer parameter specifications while achieving identical
goodness-of-fit.

The exponential variogram model follows the form:

h
a

yh)=co+c|{1-e" @

where cg represents the nugget effect, c; is the partial sill, a is the
range parameter, and the effective correlation range extends to 3a units,
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representing the distance at which 95 % of the total sill is reached and
spatial correlation becomes negligible.

The selected exponential model exhibited a nugget effect (c,) of
0.091, representing 48 % of the total sill, indicating substantial short-
range variation and measurement uncertainty (Fig. 14). The partial
sill (¢7) of 0.1 accounts for 52 % of the total variance, representing the
structured spatial correlation component. The range parameter (a) of
2435 m defines the characteristic correlation distance, while the total
sill (¢, + ¢7) of 0.191 represents the complete spatial variance. The
effective range extends to 7305 m (3a), representing the distance at
which 95 % of the total sill is reached and spatial correlation becomes
negligible.

The fitted variogram parameters provide crucial insights into the
spatial structure of ML residuals and optimization opportunities for the
two-stage prediction approach. The nugget-to-sill ratio of 48 % indicates
substantial short-range variation encompassing measurement uncer-
tainty, micro-scale environmental heterogeneity not captured by the ML
feature space. The structured spatial component (52 % of total variance)
demonstrates that a considerable spatially correlated signal remains in
the ML residuals, validating the residual kriging approach and sug-
gesting meaningful improvements in prediction accuracy are achiev-
able. The effective correlation range of 7305 m defines the spatial
neighborhood within which residual values exhibit significant correla-
tion, which can provide guidance for optimal sampling density in future
data collection.

The good model fit (RSS = 0.000805, R’= 0.952, RMSE = 0.005179)
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Fig. 13. Shapley importance plots for the two best-performing base models (BMs) for the stacked model SM_3 in (a) and (b), and SM_5 in (¢) and (d). Query points for
the Shapley importance plots were taken from the test sets (Va_i) of the base model's respective fold i. Parameters other than those mentioned in Table 3 are

geological categories, morphometric features (MF) and Geomorphons (GM) classes.

Table 6
Residuals statistics for all five sets obtained using Stacked ensemble models on
different folds.

D Count Mean Std Min Max

1 888 —0.003 0.634 -2.335 2.891
2 888 0.016 0.622 —2.363 2.650
3 888 —0.037 0.586 —2.238 2.266
4 888 0.054 0.608 —2.482 2.937
5 888 0.021 0.626 —-2.011 3.152

and strong agreement between empirical and theoretical semivariance
values across all 30 lag distances confirm that the exponential model
successfully captures the underlying spatial covariance structure,
ensuring reliable spatial predictions and uncertainty estimates for the
residual kriging component of the two-stage modelling framework. Or-
dinary kriging was implemented using the exponential variogram model
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with partial sill (c1) = 0.100, range = 2435 m, and nugget (co) = 0.091.
The kriging procedure employed 4-16 nearest training points within a
50-km search radius under a constant mean.

4.4. Predominant frequency maps of the capital regions

4.4.1. Delhi

The residual kriging implementation for the Delhi region achieved
99.48 % spatial coverage, with ordinary kriging predicting most loca-
tions on the 50-m resolution grid. K-nearest neighbours (KNN) gap
filling was applied to complete the remaining 0.52 % of locations where
kriging could not produce reliable predictions due to sparse local data
density, achieving complete 100 % grid coverage across the study area.
The final stacked ensemble model (FSEM) predictions (Fig. 15a) show
clear spatial patterns of natural frequency variation across the Delhi
region. High frequency zones (>1.38 Hz) appear in the southeastern
portion of the study area, corresponding to areas with shallow bedrock
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Table 7
Variogram model comparison results. RSS — Residuals Sum of Squares, AIC — Akaike Information Criterion.
ID Model RSS AIC Range (m) Sill Nugget
1 Exponential 0.000805 —311.79 2435 0.191 0.091
2 Matérn 0.000805 -311.79 2435 0.191 0.091
3 Exponential+Nugget 0.000805 -311.79 2435 0.191 0.091
4 Spherical 0.002092 —283.13 4800 0.183 0.096
5 Spherical+Nugget 0.002093 -283.11 4799 0.183 0.096
6 Linear 0.002552 -277.16 3434 0.181 0.098
7 Gaussian 0.002642 ~276.12 2091 0.180 0.105
8 Nugget 0.069230 ~180.15 0 0.134 0.134
frequency distribution of the Kathmandu basin, with the lowest natural
0.22 R o Ty frgquencies F<1.0 I.‘IZ) concentrated in t.he central basin floor where
: ; - 3 thick lacustrine sediments are present. Higher frequency values (> 3.2
0.2F ! ' 000¢ Hz) are observed along the basin margins and surrounding hills, corre-
------- e B e O -O-O e OS 5701 sponding to bedrock outcrops and shallow soil cover. The north-south
__0.18f : 1 trending frequency patterns reflect the basin's structural geology, with
\‘; E notable low-frequency corridors following ancient lake bed deposits.
g 0.16 0.091 + 0.100(1 — 725 Residual kriging adjustments (Fig. 16b) show local corrections,
E : 7 particularly in the transition zones between the basin floor and sur-
é 0.14 E E ] rounding hills, where geological contacts create sharp impedance con-
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Pl i i . } large-scale basin geometry effects and localized geological influences,
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! ‘ ' ‘ S, =0.091
0'080 10 15 4.4.3. Dhaka
Distanice) b ) (a) The Dhaka region analysis employed the ordinary kriging with
3 ‘x104 . global variogram parameters, achieving complete spatial coverage
@ without additional interpolation techniques. The uniform data distri-
& of ] bution across the study area enabled consistent regional prediction
= quality. The FSEM map (Fig. 17a) displays the characteristic low-
;13 .k 1 frequency signature of the Bengal Delta region, with most areas
5 showing natural frequencies below 1.02 Hz, reflecting the presence of
4 | ﬁHH ‘ . ‘ deep alluvial deposits and recent deltaic sediments. Variations are
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Fig. 14. Variogram modelling results for the residuals obtained from stacked
ensemble models (SEMs) - (a) Exponential model parameters, (b) Variation of
number of point pairs with distance corresponding to each empirical data point.
Here, a — Range, S - sill (co + ¢1), ¢o — nugget.

and elevated topographic positions. Medium frequency regions
(0.55-0.70 Hz) are located in the western sectors, while low frequency
zones (<0.52 Hz) characterize the northeastern areas. The lowest pre-
dominant frequency values occur along the Yamuna River floodplains in
the northeast, reflecting deep alluvial deposits and soft sedimentary
conditions. A north-to-south gradient is observed, with frequencies
gradually increasing from the river valley toward higher ground.

The application of residual kriging corrections (Fig. 15b) shows local
improvements in prediction accuracy, particularly at and around loca-
tions where actual fo measurements were conducted. The final regres-
sion kriging map (Fig. 15c¢) integrates the regional trends captured by
machine learning and the local spatial correlations modeled through
geostatistical interpolation, improving prediction reliability for seismic
site characterization applications.

4.4.2. Kathmandu

Residual's ordinary kriging achieved complete spatial coverage for
the Kathmandu region using the global variogram model parameters
derived from the residual analysis. Unlike the Delhi implementation, no
gap-filling procedures were required due to the adequate spatial distri-
bution of training data relative to the study area extent.

The FSEM predictions (Fig. 16a) show the characteristic bowl-shaped
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the eastern sectors where active floodplain processes maintain softer
sedimentary conditions.

The residual kriging component (Fig. 17b) shows fine-scale spatial
structure in the prediction residuals, capturing local geological varia-
tions not fully represented by the morphometric predictors. The inte-
grated regression kriging results (Fig. 17c) provide a comprehensive
natural frequency map that accounts for regional depositional patterns
and local site effects, offering information for seismic hazard assessment
in this expanding megacity built on unconsolidated sediments.

4.5. Methodological performance and comparative analysis

4.5.1. DEM-based natural frequency prediction performance

The stacked ensemble approach achieved test R? values of
0.509-0.553 and RMSE of 0.587-0.633 across cross-validation folds,
demonstrating moderate predictive capability for predominant fre-
quency (fo) estimation using satellite-derived morphometric parame-
ters. The regression kriging approach provides reliable regional-scale
patterns appropriate for preliminary seismic zonation and planning
applications. However, the 49 % unexplained variance and multi-
resolution input constraints necessitate field validation for site-specific
engineering design. The performance consistency across folds in-
dicates stable predictions despite training data variations. A comparison
with Vs30 (shear wave velocity for top 30 m of soil profile) prediction
methodology provide relevant context for evaluating these results.
Established approaches using topographic proxies typically achieve
similar performance metrics values in morphometric studies report
modest R? ranges in diverse geological settings (Thakur and
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Fig. 15. Predominant Frequency (fo in Hz) prediction obtained for the Delhi region using (a) final Stacked Ensemble Model (FSEM), (b) residual kriging (RK), and (c)
Regression Kriging (combining FSEM and RK). The map is prepared using a 50 m x 50 m grid and fo classes are coloured based on quantiles.

Anbazhagan, 2025). Our predominant frequency (fo) prediction performance falls within this range, suggesting comparable accuracy
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Fig. 15. (continued).

between DEM-based approaches for these distinct but related seismic
parameters.

Tree-based ensemble methods consistently outperformed other al-
gorithms in our study, aligning with recent trends in Vs30 prediction
research where ensemble approaches increasingly show superior per-
formance for complex terrain-geophysical relationships (Geyin and
Maurer, 2023; Thakur and Anbazhagan, 2025). The exclusive selection
of bagged and boosted ensembles across all cross-validation folds in-
dicates that these methods effectively capture the nonlinear relation-
ships between terrain morphometry and fo. While operational Vs30
systems rely primarily on topographic slope, our approach integrates
comprehensive morphometric variables including elevation, curvature
parameters, and terrain complexity indices.

This methodological difference reflects the distinct nature of fo
against Vs30 as seismic site characterization parameters — Vs30 char-
acterizes time-averaged subsurface velocity structure while fo quantifies
resonant response characteristics. The prominence of MRVBF (Shapley
value ~0.18) as the primary predictor reflects the physical relationship
between sediment accumulation processes and seismic site response.
Geological formation characteristics, particularly Precambrian rocks
(Shapley value ~0.17), contribute substantially to predictions, indi-
cating that both topographic and geological factors influence natural
frequency patterns at regional scales. The comparable performance be-
tween our fo prediction approach and established Vs30 methods sug-
gests that satellite-derived terrain analysis can effectively capture
subsurface geological controls relevant to seismic site response. How-
ever, both parameters provide complementary rather than equivalent
information for site characterization applications.

4.5.2. Resolution of scale-dependent effects in HVSR studies

The relationship between terrain morphometry and fo prediction
shows sensitivity to spatial scale and data characteristics. Basin-scale
studies have reported limited effectiveness of geomorphometric
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variables (Trevisani et al., 2017; Trevisani et al., 2021), while regional-
scale analysis reveals substantial predictive capability. This difference
appears related to spatial extent and data density rather than funda-
mental methodological limitations.

The variogram analysis reveals important spatial characteristics: a
nugget-to-sill ratio of 48 % with an effective correlation range of 7305 m
indicates substantial spatial structure in natural frequency patterns. The
structured spatial component (52 % of total variance) remaining in ML
residuals validates the regression kriging approach and suggests that
spatial correlation modelling provides meaningful prediction improve-
ments beyond machine learning alone. These findings suggest that DEM-
derived predictors become effective when sufficient spatial coverage
and geological diversity are present in the dataset. The scale-
dependency has practical implications for remote sensing applications,
indicating that regional-scale approaches may be more suitable for
satellite-based site characterization than local-scale applications.

4.6. Limitations and future research scope

The present methodology addresses practical needs in regions where
traditional geotechnical site characterization is logistically challenging.
High-resolution predominant frequency (fo) mapping using globally
available satellite data provides site response information for earth-
quake engineering applications, particularly in rapidly developing
urban areas. However, several limitations affect broader applications.
Model performance explains approximately 51 % of predominant fre-
quency (fo) variance, indicating substantial unexplained variation re-
mains. Model performance (R? ~ 0.51) is appropriate for regional-scale
seismic hazard assessment and preliminary zonation but insufficient for
site-specific engineering design or detailed microzonation where clas-
sification accuracy is critical. The 49 % unexplained variance reflects
local subsurface heterogeneity not captured by DEM analysis which
includes buried paleo-channels, weathered zones, and anthropogenic
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fills. Field validation through direct fo measurements remains essential for engineering design applications. The effective correlation range of
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~7 km suggests that interpolation accuracy decreases significantly
beyond this distance from training data, affecting prediction reliability
in poorly sampled areas. Also, the predicted fo values represent char-
acteristic site frequencies based on HVSR measurements, not event-
specific resonance frequencies and actual site response during earth-
quakes may vary with source directionality, incident wavefield
composition, and nonlinear soil behaviour. Our maps provide average
site response proxies suitable for regional hazard assessment and pre-
liminary planning, not event-specific predictions for critical infrastruc-
ture design.

Our proposed methodology integrates multi-resolution input data
spanning three orders of magnitude in spatial scale. While the GLO-30
DEM provides 30 m resolution topographic information, bedrock
depth data is available only at 250 m resolution, and geological for-
mations are mapped at scales coarser than 1:500,000. Although the
model successfully integrates these disparate scales through machine
learning, the effective prediction resolution is fundamentally con-
strained by the coarsest input variable, which in this case is the bedrock
depth dataset at approximately 250 m. The high-resolution 50 m output
grids serve two practical purposes: enabling detailed visualization of
topographic influences on fo predictions and facilitating integration
with standard urban planning GIS datasets. However, these fine visu-
alization grids should not be interpreted as implying corresponding
precision in fo predictions at sub grid scales. The spatial uncertainty is
further compounded by georeferencing procedures applied to source
studies' published maps, which introduce positional uncertainties
ranging from 50 to 200 m depending on map quality and ground control
point availability. These combined factors limit the effective spatial
precision of predictions, though regional-scale patterns remain robust
and appropriate for preliminary seismic zonation and planning
applications.

The present study's approach also requires validation in different
geological and tectonic contexts before widespread application. Areas
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with complex geological structures, significant anthropogenic modifi-
cations, or disconnected relationships between surface topography and
bedrock conditions may exhibit reduced prediction accuracy. Addi-
tionally, the reliance on existing measurement databases limits spatial
coverage in some regions, and the effectiveness of terrain morphometric
parameters depends on the specific relationships between surface
morphology and subsurface conditions in different environments. Inte-
gration of additional satellite-derived variables could potentially
improve prediction accuracy, though the moderate performance of
comprehensive morphometric analysis suggests that terrain-based ap-
proaches may have inherent limitations for fo prediction. Multi-sensor
data fusion incorporating SAR backscatter, and optical vegetation
indices represents potential enhancement pathways. The framework's
modular design enables adaptation to different remote sensing platforms
and integration with existing monitoring systems.

The compiled dataset exhibits spatial heterogeneity, with measure-
ment concentration in urban centers (Delhi, Kathmandu, Dhaka)
reflecting the distribution of government microzonation projects and
research studies in populated areas. This urban bias may limit model
extrapolation accuracy to under sampled mountainous terrain, high-
elevation plateaus, intermontane basins, and steep slopes where infra-
structure development occurs but measurements remain sparse. While
the dataset captures diverse geological contexts (Quaternary sediments,
Precambrian basement, multiple depositional environments) essential
for regional pattern recognition, the uneven spatial distribution repre-
sents an inherent limitation of retrospectively compiled measurements.
Also, regional-scale patterns captured by terrain morphometry and
geological classifications provide first-order approximations suitable for
preliminary hazard assessment, but site-specific validation remains
essential for infrastructure applications in under sampled terrain types.
Future studies should prioritize systematic measurements across eleva-
tion gradients, diverse geological contexts, and currently sparse regions
to improve model representativeness across the full range of Himalayan
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Fig. 17. Predominant Frequency (fo in Hz) prediction obtained for the Dhaka region using (a) final Stacked Ensemble Model (FSEM), (b) residual kriging (RK), and
(c) Regression Kriging (combining FSEM and RK). The map is prepared using a 50 m x 50 m grid and fo classes are coloured based on quantiles.

terrain types and assess model transferability beyond accessible valley sites.
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Future research should also focus on developing region-specific
calibration approaches that account for local geological conditions
and their influence on terrain — frequency (fo) relationships. Physics-
based feature engineering approaches combining multiple terrain pa-
rameters into composite indices specifically designed for fo prediction
could enhance accuracy by capturing complex interactions between
terrain characteristics and their combined influence on site response
mechanisms. Integration of additional remote sensing data sources,
including synthetic aperture radar and hyperspectral imagery, could
provide enhanced characterization of subsurface conditions and
improve prediction accuracy in complex geological environments.

5. Summary and Conclusion

This study establishes that satellite-derived terrain morphometry,
combined with geological classifications and bedrock depth data, en-
ables robust regional-scale predominant frequency (fo) prediction when
integrated through machine learning frameworks. This represents a
methodological advancement over previous approaches that relied
exclusively on spatial interpolation techniques such as kriging, inverse
distance weighting, and natural neighbor methods which simply redis-
tribute measured values without leveraging terrain characteristics,
geological context, or subsurface parameters. While basin-scale studies
found limited utility in geomorphometric variables due to sparse data
(Trevisani et al., 2021), our regional analysis with 4400 measurements
demonstrates that physical predictors substantially enhance fo mapping
reliability beyond what interpolation alone can achieve.

Our analysis reveals a clear predictor hierarchy governing seismic
site response. Out of twenty predictors, valley bottom identification
(MRVBF) emerges as the strongest predictor (Shapley importance ~
0.18), reflecting the critical role of sediment accumulation zones in
controlling impedance contrasts. Geological formation characteristics,
particularly Precambrian basement rocks (~ 0.17), rank second,
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followed by elevation (=~ 0.15) and bedrock depth. This hierarchy
directly reflects the physical controls of depositional environments and
basement geology on natural frequency patterns. The two-stage
regression kriging framework achieves R? = 0.516 and RMSE = 0.634
log units, with variogram analysis revealing that 52 % of residual vari-
ance exhibits spatial correlation extending 7.3 km. This structured
spatial component validates combining machine learning predictions
with geostatistical interpolation, demonstrating that each stage captures
complementary aspects of fo variation.

The methodology provides practical benefits for earthquake-prone
developing regions where conventional geotechnical site characteriza-
tion remains logistically challenging and cost-prohibitive. Generated fo
maps for Delhi, Kathmandu, and Dhaka successfully delineate con-
trasting site response zones from low-frequency deep sedimentary ba-
sins (<1.0 Hz) to high-frequency bedrock-controlled areas (>3.0 Hz)
using globally available satellite data. Unlike interpolation methods
requiring dense measurement networks, the predictive approach ex-
tends reliable mapping to undersampled areas through learned terrain-
frequency relationships, offering significant operational advantages for
regional seismic zonation and preliminary hazard assessment.

However, critical limitations define appropriate application bound-
aries. The moderate model performance (R2 ~ 0.51) suits regional
planning purposes but proves insufficient for site-specific engineering
design. The 49 % unexplained variance reflects local subsurface com-
plexities such as buried paleo-channels, weathered zones, anthropogenic
fills etc. that surface-derived parameters cannot capture. Consequently,
field validation through direct fo measurements remains essential for
infrastructure applications. Additionally, effective prediction resolution
is constrained by the coarsest input dataset (250 m bedrock depth), not
the 50 m visualization grid. Georeferencing uncertainties, multi-
resolution data integration across three orders of magnitude, and
urban measurement concentration further limit extrapolation confi-
dence to undersampled regions. The predicted fo values represent
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characteristic site frequencies from HVSR measurements rather than
event-specific earthquake resonance, which varies with source mecha-
nisms and incident wavefield properties.

Future advances for the fo prediction improvement will require
systematic field campaigns targeting elevation gradients, diverse
geological contexts, and currently data sparse regions to improve model
transferability beyond the present scope. Methodological enhancements
through physics-based composite indices combining terrain parameters,
integration of gravity anomalies constraining basin geometry, higher-
resolution bedrock depth datasets, and region-specific calibration ac-
counting for local geological conditions may offer pathways toward
improved accuracy. The demonstrated capability of DEM-based pre-
dictive modelling to generate regional fo maps from globally available
data represents meaningful progress for seismic site characterization in
data-constrained regions, provided practitioners recognize the meth-
odology's appropriate scope for planning applications and the continued
necessity of field validation for engineering design.
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