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A B S T R A C T

Predominant frequency (fo) characterization across large seismically active regions remains challenging due to 
limited field measurements and cost constraints. Existing fo mapping approaches rely exclusively on spatial 
interpolation methods (kriging, inverse distance weighting, natural neighbor) that redistribute measured values 
without incorporating terrain morphometry, geological context, or subsurface parameters as predictors. This 
study develops a DEM-based machine learning methodology for regional-scale fo prediction in the Himalayan 
region and Indo-Gangetic Plains, addressing critical data scarcity in earthquake-prone developing countries. We 
compiled 4400 fo measurements from 26 published HVSR studies using systematic georeferencing procedures to 
ensure spatial consistency. The methodology employs a two-stage regression kriging framework: (1) stacked 
ensemble machine learning models trained on 20 predictor variables using GLO-30 DEM morphometric pa
rameters (elevation, slope, curvature indices), geological classifications, and bedrock depth information to 
capture nonlinear terrain-frequency relationships; and (2) ordinary kriging of model residuals to account for 
spatial correlation patterns. Cross-validation partitioning ensures unbiased residuals, while Bayesian optimiza
tion determines optimal hyperparameters for base model selection. Feature importance analysis reveals that 
valley bottom identification (MRVBF), geological formation characteristics, and bedrock depth provide primary 
predictive capability (Shapley values ~0.15–0.18), demonstrating that terrain morphometry and subsurface 
parameters effectively control fo variation at regional scales. The stacked ensemble achieves R2 = 0.516 and 
RMSE = 0.634 log units, with variogram analysis revealing spatial correlation extending 7.3 km and structured 
variance accounting for 52 % of model residuals. High-resolution fo maps (50 m grid) generated for Delhi, 
Kathmandu, and Dhaka differentiate site response zones: low frequencies (<1.0 Hz) in deep sedimentary basins 
versus high frequencies (>3.0 Hz) in bedrock-controlled areas.

This work represents the first regional-scale application of DEM-derived terrain morphometry for direct fo 
prediction, utilizing a much larger compiled dataset for this purpose than previous basin-scale studies. Unlike 
previous studies that employed purely interpolation techniques without predictive parameters, this hybrid 
framework integrates physical predictors (terrain morphometry, geology, bedrock depth) with spatial modelling 
to produce more robust fo maps. Results demonstrate that incorporating satellite-derived morphometric and 
geological parameters—readily available globally—significantly enhances prediction reliability beyond 
interpolation-only approaches. This cost-effective methodology enables preliminary seismic hazard assessment in 
data-sparse mountainous regions where traditional field surveys are resource-constrained, with applications for 
earthquake risk assessment, regional zonation, and building code implementation in developing countries.

1. Introduction

Predominant frequency (fo) characterization across large seismically 
active regions remains fundamentally important for earthquake hazard 

assessment, yet achieving comprehensive spatial coverage is constrained 
by limited field measurements and cost considerations in data-sparse 
regions. In literature, site classification is usually done based on pa
rameters quantifying near-surface stiffness – such as shear wave 
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velocity, Vs, and the fundamental dynamic response – such as the site's 
predominant or natural frequency, fo (Akin et al., 2011). For a one- 
dimensional response analysis, these two parameters are related by a 
fundamental expression fo = Vs/(4H), where Vs represents the average 
shear wave velocity of overlying sediments and H denotes the depth to 
seismic bedrock (Kramer and Stewart, 2024). Furthermore, these site 
characteristics influence the built environment's response during the 
seismic events (Panzera et al., 2018; Brando et al., 2020; Senkaya et al., 
2024). In the microzonation studies, these parameters have been used 
either independently or in combination for site classification (Yilar et al., 
2017; Maklad et al., 2020; Abbasnejadfard et al., 2023; Martínez-Segura 
et al., 2024; Di Martino et al., 2024). It has been well established in the 
earthquake engineering literature that beyond predictor such as Vs30 
(shear wave velocity of top 30 m of a site) for characterizing a site's 
seismic response, the fo value of the site also plays a critical role as it 
directly influences the amplification characteristics of the site (Delgado 
et al., 2000; Haghshenas et al., 2008; Hassani and Atkinson, 2018; 
Senkaya et al., 2024).

For regional-scale microzonation purposes, significant literature 
exists for shear wave velocity, Vs30-based site characterization using 
remotely sensed data such as Digital Elevation Models (DEMs) and their 
derivatives (Allen and Wald, 2009; Mori et al., 2020; Kim et al., 2021; 
Geyin and Maurer, 2023; Thakur and Anbazhagan, 2025). Earlier 
studies for site characterization using Vs30 relied on relatively simple 
DEM parameters such as topographic slope (Allen and Wald, 2009). In 
recent studies, more advanced models utilizing different geo
morphometric, geomorphological predictors and spatial analysis have 
been developed for this purpose (Liu et al., 2017; Geyin and Maurer, 
2023; Abbasnejadfard et al., 2023; Thakur and Anbazhagan, 2025). The 
fo estimation represents a fundamental parameter in seismic site char
acterization. Past studies have demonstrated that sites typically overlain 
with softer sedimentary materials over stronger bedrock are particularly 
susceptible to amplification and liquefaction effects during earthquake 
events (Lin et al., 2021; Kramer and Stewart, 2024). The primary cause 
of this phenomenon is the entrapment and resonance of seismic energy 
within the softer surface layer, often leading to devastating effects on 
infrastructure above.

The fo is calculated using ground vibration measurements to quantify 
this site-specific amplification effect. These vibration measurements, 
obtained during earthquake events or from ambient noise recordings, 
are processed to calculate Horizontal to Vertical Spectral Ratio (HVSR) 
curves, which are then utilized for natural frequency estimation 
(Nakamura, 1989; SESAME Project, 2004; Haghshenas et al., 2008). The 
HVSR technique has become a standard method in earthquake engi
neering due to its simplicity and effectiveness in characterizing local site 
effects. Past studies have also utilized fo for site characterization relating 
it to site class similar to Vs30 as given in Table 1 (Zhao et al., 2006; 
Fukushima et al., 2007; JRA, 2019; Laouami, 2020). However, despite 
the critical importance of fo in seismic hazard assessment and the proven 
success of remote sensing approaches for Vs30 estimation, no compre
hensive methodologies currently exist for predicting fo at regional scales 
for the Himalayan region. This represents a significant gap in the ability 
to conduct reliable, cost-effective, regional scale seismic site charac
terization using fo prediction.

1.1. Research objectives

The Himalayan region presents particular challenges for predomi
nant frequency (fo) -based seismic site characterization due to its 
geological complexity, high seismic activity, and rapidly expanding 
urban centers. Current approaches rely predominantly on ground-based 
measurements that are spatially limited and insufficient for regional- 
scale hazard assessment. The availability of high-resolution global 
DEM datasets such as SRTM (NASA JPL, 2013) and GLO-30 (European 
Space Agency, 2024) provides an opportunity to develop DEM-based 
methodologies for comprehensive seismic site characterization. To 
predict fo using application of geological information, bedrock depth 
data and DEM-based parameters for seismic site characterization, our 
study aims to: 

1. Establish a comprehensive regional database by systematically 
compiling predominant frequency measurements from multiple 
published sources across the Himalayan region.

2. Extract and evaluate DEM-derived predictors by developing geo- 
morphometric parameters from GLO-30 DEM data (elevation, 
slope, curvature, terrain indices) and assessing their predictive 
capability for fo estimation along with geological and subsurface 
variables.

3. Implement a regression kriging framework integrating stacked 
ensemble machine learning with spatial geostatistical modelling to 
optimize prediction accuracy across heterogeneous terrain types.

4. Generate high-resolution predominant frequency (fo) maps for three 
Himalayan capital regions using the developed framework, 
providing regional-scale seismic site characterization.

This study demonstrates the application of satellite-derived topo
graphic variables combined with geological classifications and bedrock 
depth information as predictors for predominant frequency (fo) esti
mation, contributing to the methodological development of quantitative 
remote sensing for seismic site characterization. We implement a two- 
stage hybrid framework that integrates stacked ensemble machine 
learning with residual kriging to capture both nonlinear terrain- 
frequency relationships and spatial autocorrelation patterns. This 
approach differs from previous methodologies through its regional-scale 
application utilizing a larger dataset across diverse geological settings 
rather than basin-specific analyses, its focus on direct fo prediction 
rather than indirect Vs30-based inference, and its comprehensive 
morphometric analysis from readily available GLO-30 DEM data.

Previous study on fo prediction for the Kathmandu basin found that 
geomorphometric secondary variables did not enhance interpolation 
accuracy due to limited data availability, with only distance to bedrock 
outcrops showing improvement (Trevisani et al., 2021). Our study 
demonstrates that morphometric parameters can effectively contribute 
to fo prediction when combined with extensive spatial coverage and 
advanced ensemble techniques. The methodology is designed for 
regional seismic zonation applications where cost-effective satellite- 
based assessment is advantageous, though site-specific engineering ap
plications require field validation. This integrated approach addresses 
critical data scarcity constraints in earthquake-prone developing re
gions, with potential applications extending to other seismically active 
areas worldwide.

2. Data

2.1. Existing studies and measurements

We compiled approximately 4400 fo data points from 26 published 
studies across the Himalayan region (Table 2). Fig. 1 shows these 
measurement sites, which are concentrated in and around major urban 
centers, with most located in India, followed by Bangladesh and Nepal. 
All these studies used the HVSR technique to determine fo values. The 

Table 1 
Predominant/Natural frequency (fo) based site-classification system proposed in 
past studies. For fo – JRA (2019), Zhao et al. (2006), Fukushima et al. (2007), for 
Site Class, Vs30 and SPT-N – BSSC (2015).

Site Class Description fo (Hz) Vs30 (m/s) SPT-N

B Rock > 5 760–1500 > 50
C Hard soil 2.5–5 360–760 15–50
D Medium soil 1.66–2.5 180–360 < 15
E Soft soil < 1.66 < 180 –
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data sources varied in their measurement approaches: some studies 
recorded ambient vibrations under normal conditions, while others 
captured earthquake-induced vibrations during seismic events.

Several studies combined both measurement types. Previous studies 
have applied various spatial interpolation techniques to create regional 
site characterization maps from their fo measurements. These include 
Kriging (Walling et al., 2009; Singh et al., 2019; Trevisani et al., 2021), 
Natural Neighbor Interpolation (Kuldeep et al., 2022), Inverse Distance 
Weighting (Zahoor et al., 2023), and Nearest Neighborhood Interpola
tion (Gupta et al., 2023). Additionally, several studies provided Vs30 
contour maps for site characterization (DST, 2007; Mundepi et al., 2010; 
Kuldeep et al., 2022; Kumar et al., 2023). For studies presenting only 
contour maps, we extracted fo values at the original measurement lo
cations identified in the studies. Since the source studies employed exact 
interpolation methods (Kriging, IDW, Natural Neighbor), the interpo
lated contour values at these measurement points equal the original 
observed values. We interpolated representative values from contour 
intervals specifically at these georeferenced measurement locations, 
ensuring extracted data represents actual field observations rather than 
interpolated intermediate points.

Most existing studies have not incorporated geomorphological vari
ables in their analysis. Trevisani et al. (2021) represents a notable 
exception, having incorporated terrain characteristics in their analysis 
of the Kathmandu basin. However, they concluded that geo
morphometric information offered limited benefits for fo prediction due 
to insufficient data, except for distance to outcropping bedrock. This 
limited exploration of topographic variables suggests potential for 

further investigation of DEM-derived predictors in natural frequency 
estimation.

2.2. Georeferencing and data extraction

The compiled studies varied in their spatial data reporting. Some 
provided precise geographic coordinates, while others presented mea
surement locations only through maps with marked points (S1 and S2, 
respectively, in Table 2). For the latter category, we applied systematic 
georeferencing procedures following established protocols (Yao Xiao
bai, 2020). Our georeferencing process involved three key steps. First, 
we identified Ground Control Points (GCPs) on published maps using 
recognizable features. Second, we registered these points to standard 
coordinate systems using geographic information systems. Third, we 
verified accuracy by cross-checking multiple reference features, 
including rivers, lakes, major roads, railways, administrative bound
aries, and urban development patterns. The georeferencing procedure 
was performed in QGIS (QGIS Development Team, 2023) environment. 
The detailed methodology of this procedure is explained in Thakur and 
Anbazhagan (2025).

For fo value extraction, we employed two methods based on the data 
format. Studies with tabulated coordinates allowed direct extraction of 
fo values. For studies presenting only contour maps, we interpolated 
representative values from contour intervals at each measurement 
location. This systematic approach ensures consistent data quality across 
all sources, providing a robust dataset for developing and validating our 
DEM-based prediction methodology.

2.3. fo Dataset features

Fig. 2 shows the distribution of fo data points across 4440 sites in the 
final dataset from the Himalayan region and Indo-Gangetic Plains. Based 
on the JRA (2019) criteria (Table 1), most sites fall within the Soft soil 
category (Site Class E – 3395 sites), followed by Medium soil (Site Class 
D – 356 sites) and Hard soil (Site Class C – 335 sites). Compared to sites 
in soil categories, relatively few sites have f₀ values that fall under the 
Rock category (Site Class B – 354 sites).

The spatial distribution of fo values (Fig. 1) reflects distinct regional 
geological controls. Low-frequency sites are concentrated in deep 
sediment-filled areas, including Dhaka, Delhi's Yamuna floodplain, 
Kolkata's deltaic region, and areas near the Brahmaputra River around 
Guwahati, where thick alluvial deposits can amplify longer-period 
seismic waves. High-frequency sites occur at locations with shallow 
bedrock or stiff soils, found both at elevated areas within these same 
cities and in Himalayan settings such as the Kangra Valley foothills and 
steep terrain locations. This pattern demonstrates the fundamental 
control of subsurface geology and topography on seismic site response 
across the Indo-Gangetic Plains and Himalayan foreland.

2.4. GLO-30 DEM, bedrock depth and geological dataset

In the present study, we have used the GLO-30 Digital Elevation 
Model (DEM) for fo predictions. The Copernicus GLO-30 DEM, derived 
from TanDEM-X bistatic SAR interferometry (2010–2016), provides 
global 30-m resolution topographic data with ~2 m relative vertical 
accuracy and ~ 4 m absolute vertical accuracy, representing a signifi
cant improvement over legacy DEMs for seismic applications (Wessel 
et al., 2018). We employed GLO-30 DEM and its morphometric de
rivatives to enhance our fo prediction models for seismic site charac
terization. The dataset's 30-m resolution supports multi-scale terrain 
analysis, capturing local site effects and regional geological controls on 
natural frequency that complement traditional Vs30-based site classifi
cation schemes (Geyin and Maurer, 2023). GLO-30's enhanced detection 
of sedimentary basins, where fo is expected to correlate strongly with 
basin geometry and sediment thickness, combined with its limited 
vegetation penetration capability for identifying surface structure 

Table 2 
List of all studies considered for the dataset preparation classified according to 
sites' geolocation information (or GI): S1 – sites with reported/known lat and 
long values, and S2 – Sites with locations marked on a map.

ID Study Tests* GI Datapoints Region*

1 Singh et al. (2019) HVSR S1 34 AR
2 DST (2007) HVSR, SPT S1 141 AS
3 Kuldeep et al. (2022) HVSR, ANI S2 54 AS
4 Ansary and Arefin 

(2020)
HVSR S1 92 DAC

5 Ansary et al. (2022) HVSR S2 580 DAC
6 NCS (2016) HVSR, MASW, 

CS
S1 511 DL

7 Mundepi et al. (2010) HVSR S2 115 DL
8 Mahajan et al. (2021) HVSR S2 191 HP
9 Kumar et al. (2023) HVSR, MASW S2 44 HP
10 Sandhu et al. (2022) HVSR S1 19 HR
11 Zahoor et al. (2023) HVSR, MASW S2 119 J&K
12 Gupta et al. (2023) HVSR S2 125 J&K
13 Paudyal et al. (2013) HVSR S1 172 NP
14 Chamlagain et al. 

(2025)
HVSR S2 48 NP

15 Trevisani et al. (2021) HVSR S1 39 NP
16 Gupta and Kumari 

(2023)
HVSR S1 194 NI

17 Walling et al. (2009) HVSR S1 35 OD
18 Mishra et al. (2020) HVSR S1 52 SK
19 Rahman et al. (2018) HVSR, MASW, 

SPT
S1 167 SYL

20 Chowdhuri et al. (2011) HVSR, SPT S2 74 TR
21 Shankar et al. (2021a) HVSR, MAM S2 180 UP
22 Shankar et al. (2021b) HVSR S2 75 UP
23 Kundu et al. (2024) HVSR S2 53 UP
24 Kumar et al. (2025) HVSR S1 81 UK
25 Mundepi et al. (2015) HVSR S2 182 UK
26 Nath et al. (2015) HVSR S2 1063 WB

* Abbreviations: HVSR – Horizontal to Vertical Spectral Ratio, MASW – 
Multichannel Analysis of Surface Waves, ANI – Ambient Noise Interferometry, 
CS – Crosshole Seismic, SPT – Standard Penetration Test. Regions' abbreviations: 
Arunachal Pradesh – AR, Assam – AS, Bihar – BR, Dhaka – DAC, Delhi – DL, 
Himachal Pradesh – HP, Punjab – PB, Haryana – HR, Jammu and Kashmir – J&K, 
Nepal – NP, Northern-India – NI, Odisha – OD, Sikkim – SK, Sylhet – SYL, Tripura 
– TR, Uttarakhand – UK, Uttar Pradesh – UP, West Bengal – WB.
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information, provides an opportunity for fo prediction across diverse 
geological settings. Fig. 3 (a) and (b) show the variation of fo values for 

the site locations as shown in Fig. 1, with respect to elevation (in meters) 
and slope (in percentage). The site's elevation and slope values in the 
figure correspond to a resampled raster with a resolution of 50 m × 50 m 
using the GLO-30 DEM.

Bedrock depth data were obtained from the global depth-to-bedrock 
dataset developed by Shangguan et al. (2017), which provides 
comprehensive spatial coverage at 250 m resolution. This dataset was 
constructed using machine learning algorithms (Random Forest and 
Gradient Boosting Tree) applied to approximately 1.3 million soil profile 
locations and 1.6 million borehole locations worldwide, along with 155 
environmental covariates including DEM-based morphological de
rivatives, lithologic units, and MODIS surface reflectance data. The 
dataset represents the most comprehensive global compilation of 
bedrock depth information available for seismic site characterization 
studies, providing the fundamental geological constraint necessary for 
natural frequency prediction in this study. Fig. 3 (c) shows the variation 
of fo values with respect to the bedrock depth values obtained from the 
Shangguan et al. (2017) dataset. Bedrock values obtained from the 
dataset for the sites shown in Fig. 1 range between 0 and 4500 m.

The geological classification data for the present study were derived 
from Wandrey (1998), which provides a comprehensive digital geologic 
map of South Asia developed under the U.S. Geological Survey World 
Energy Project (also see Thakur and Anbazhagan, 2025). This dataset 
encompasses Afghanistan, Bangladesh, Bhutan, India, Myanmar, Nepal, 
Pakistan, and Sri Lanka, compiled from numerous UNESCO geological 

Fig. 1. Main Map: Final Predominant/Natural Frequency (fo) datapoints (see legend at top right) obtained for different locations in the Himalayan region using the 
geolocation data from reports, published articles and the metric georeferencing procedure. The DEM used as a base layer in the main map for Hillshade and Elevation 
profile (see legend at bottom left) has a resolution of 50 m. Jagged lines on the main map are contour lines at a 50 m interval. Insets: Numbers in inset maps are the 
locations marked on the main map.

Fig. 2. Histogram of all the datapoints collected from the past studies as listed 
in Table 2. Vertical lines show the class boundaries as described in Table 1.
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maps and national geological surveys at scales ranging from 1:500,000 
to 1:10,000,000. The geological units are systematically classified ac
cording to the World Energy Project standard, incorporating geologic 
age and general lithologic characteristics, with attributes including 
stratigraphic units and regional geological contacts. Based on this 
dataset, most of the sites in the present study fall in the ‘Quaternary 
sediments (Q)’ category per the dataset. Fig. 4 shows the proportion of 
different geological classes (top 6) for the fo sites as a percentage of all 
sites. In this, categories such as ‘undivided Precambrian Rocks (pC)’ and 

‘undifferentiated Paleozoic rocks (Pz)’ were most prevalent after the 
Quaternary sediment category.

3. Methodology

We have adopted regression kriging to prepare fo maps (Hengl et al., 
2007; Hengl and MacMillan, 2019). This approach combines the 
deterministic and stochastic parts of spatial variation for the final pre
diction for a location s0 given as: 

zpred(s0) = mpred(s0)+ epred(s0) (1) 

here zpred(so) is the final predicted value at a new location so, mpred(so) 
is the prediction from the Machine Learning (ML) model, and epred(so) is 
the interpolated residual for the location using residual kriging. At the 
first stage, an ML model is developed to predict the fo using different 
predictors. This stage implements stacked ensemble learning, where 
multiple base models are trained on extracted features. The best- 
performing models' predictions were combined to develop a stacked 
ML model. At the second stage, the stacked model's residuals are 
spatially interpolated using ordinary kriging. The results from kriging 
are used to update the model's prediction values around a sampled point.

In the next sections, we explain the following steps: model prediction 
parameters and their extraction, ML model selection for prediction, and 
the residual kriging procedure adopted for the final predictions. The 
regression kriging procedure for natural frequency prediction in seismic 
site characterization employs a two-stage methodology that integrates 
machine learning ensemble techniques with spatial geostatistics. This 
approach aims to effectively capture nonlinear terrain-frequency re
lationships and residual spatial correlation patterns that persist after 
initial modelling. The stacked ML model development was done in 
MATLAB (2023), kriging was performed in R (R Core Team, 2024) using 
gstat package (Pebesma, 2004), and the predictors extraction, fo site 
characterization maps preparation was done in a GIS environment.

3.1. Model prediction parameters and their extraction

Twenty predictor variables were selected for fo prediction ML model 
development, comprising seventeen continuous terrain morphometric 
parameters and three categorical geological classifications (Table 3 and 
Fig. 5). Of the twenty predictors considered for the fo prediction model, 
17 are continuous and three are categorical. The continuous variables 
include six topographic parameters – (Abbasnejadfard et al., 2023) 
Elevation, (Akin et al., 2011) Slope, (Allen and Wald, 2009) Profile 
curvature, (Amatulli et al., 2018) Plan curvature, (Ansary and Arefin, 

Fig. 3. Scatter plots for the catalogued dataset's sites' Predominant Frequency 
(fo) values with respect to (a) Elevation (m), (b) Slope (%), (c) Bedrock Depth 
(m). The colour ramp shows parameter values for the same locations. The 
elevation and slope values for the sites correspond to a resampled raster with a 
resolution of 50 m × 50 m using the GLO-30 DEM. Bedrock depth values 
correspond to a 250 m resolution raster using the global bedrock depth map by 
Shangguan et al., 2017.

Fig. 4. Proportion of different geological classes for the fo site locations as a 
percentage of the total data points. Here, Q – Quaternary sediments, pC – un
divided Precambrian rocks, Pz – Undifferentiated Paleozoic rocks, N – Neogene 
sedimentary rocks, Mi – Mesozoic intrusive rocks, MzPz – Paleozoic and 
Mesozoic metamorphic rocks.
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2020) Total curvature, and (Ansary et al., 2022) Tangential curvature; 
six terrain analysis indices – (Brando et al., 2020) Topographic Position 
Index (TPI), (Breiman, 1996) Terrain Ruggedness Index (TRI), (BSSC, 
2015) Topographic Wetness Index (TWI), (Chamlagain et al., 2025) 
Vector Ruggedness Measure (VRM), (Chen et al., 2024) surface rough
ness, and (Chowdhuri et al., 2011) Morphometric Protection Index 
(MPI); two landform characteristics (Gallant and Dowling, 2003) – 
(Delgado et al., 2000) Multiresolution Valley Bottom Flatness (MRVBF) 
and (Di Martino et al., 2024) Multiresolution Ridge Top Flatness 
(MRRTF); two distance-based parameters – (Dong and Shan, 2013) 
distance to nearest basin boundary and (DST, 2007) distance to nearest 
river; and one critical subsurface parameter – (European Space Agency, 
2024) bedrock depth. The categorical variables include (Freund and 
Schapire, 1997) Geological formation type, (Fukushima et al., 2007) 
Geomorphons landform classification, GM, and (Gallant and Dowling, 
2003) Morphometric features classification, MF.

These predictors were calculated using the DEM layer, bedrock depth 
layer, and geological layers. The terrain morphometric parameters were 
derived from the GLO-30 DEM using established geomorphometric 
analysis techniques in a GIS environment (Amatulli et al., 2018). The 

distance-based predictors were calculated using a river network layer 
and basin boundary layer for the Himalayan region from HydroSHEDS 
database (Lehner and Grill, 2013). Distance variables were calculated in 
the GIS to determine proximity to basin boundaries and drainage net
works that can influence sediment deposition and site response 
characteristics.

These variables were selected based on their theoretical and poten
tial relationships to the fundamental 1D site response equation fo = Vs/ 
(4H) (Kramer and Stewart, 2024), where bedrock depth directly repre
sents the impedance contrast parameter H, while topographic and 
geological variables serve as proxies for velocity structure (Vs) and local 
site effects (Zhao et al., 2006). The combination of the subsurface pa
rameters (such as bedrock depth and geology) and DEM-based terrain 
characteristics provides comprehensive coverage of factors controlling 
fo variations across diverse geological environments.

Next, a correlation analysis was done on the extracted predictors. 
The analysis was conducted on a filtered dataset of 3970 observations 
(89.4 % retention rate) comprising 31 predictor variables: 17 continuous 
variables and 14 categorical dummy variables representing the top 6 
geological formations (98.4 % coverage), top 4 morphological features 
(99.2 % coverage), and top 7 Geomorphons (91.3 % coverage). This was 
done to enhance visualization clarity. Categorical variables were filtered 
to retain only the most frequent categories, reducing matrix over
crowding while maintaining high data representation and excluding 
rare categories with significantly smaller sample sizes. The 465 corre
lations were distributed as strong (|r| > 0.5): 30 correlations, moderate 
(0.3 < |r| ≤ 0.5): 45 correlations, and weak (|r| ≤ 0.3): 390 correlations. 
In geological categories, Quaternary deposits (Geol_Q in Fig. 6) showed 
the strongest topographic associations with negative correlations to 
elevation (r = − 0.676) and positive correlations to valley bottom flat
ness (MRVBF, r = 0.781), indicating preferential occurrence in low-lying 
terrain. Precambrian rocks (Geol_pC in Fig. 6) demonstrated contrasting 
patterns with positive correlations to elevation (r = 0.413) and negative 
correlations to valley bottom flatness (MRVBF, r = − 0.586), suggesting 
occurrence in elevated terrain. Morphological features and Geo
morphons showed moderate correlations with topographic variables, 
notably MF_3 with topographic position index (TPI, r = − 0.422) and 
Geomorphons GM_3 with TPI (r = 0.414). The systematic correlation 
patterns validate the inclusion of these categorical predictors in the 
present study.

3.2. Dataset partitioning scheme and workflow

For the implementation of regression kriging and to obtain unbiased 
residuals for the kriging step while incorporating stacked models (SMs) 
for prediction, we used the following data partitioning and model- 
building scheme (also see Fig. 7): 

1. Initial Data Partitioning: The complete dataset was divided using 5- 
fold cross-validation, creating five folds – FN1, …, FN5 (Fig. 7). 
For each fold FNi, the remaining four folds formed the training set 
(D_i) and fold FNi became the test set (Te_i).

2. Training Set Subdivision: Each training set D_i was further split into: 
- Training subset (Tr_i): 85 % of D_i for base model training. 
- Validation subset (Va_i): 15 % of D_i for meta-learner training

3. Base Model Training: For each Tr_i, multiple base models were trained 
using 5-fold cross-validation within Tr_i to prevent overfitting.

4. Base Model Selection: Base models were evaluated on Va_i using 
RMSE, MAE and R2 (Table 4). The top two performing models were 
selected for each stacked model SM_i.

5. Meta-learner/ Stacked Model Training: The predictions from the two 
selected base models on Va_i were used as features to train a stacked 
model for SM_i. For this stage a number of model types were trained 
and best performing was selected for SM_i.

6. Final Predictions: Each stacked model SM_i generated predictions on 
its corresponding test set Te_i.

Table 3 
A list of all the parameters/predictors used for the predominant Frequency (fo) 
prediction. Ranges of parameters correspond to the resampled GLO-30 DEM at a 
50 m resolution. Here C_V – Categorical Variable.

ID Variable Abbrev. Units Range Reference 
Study

Geometric Predictors
1 Elevation Elev m 0 to 3380 –
2 Bedrock Depth BD m 0 to 4453 –

Topographic Predictors
3 Slope Slop % 0 to 122.7 –
4 Topographic 

Position Index
TPI m − 24.3 to 

17.93
Jenness 
(2006)

5 Terrain Ruggedness 
Index

TRI m 0 to 44 Riley et al. 
(1999)

6 Vector Ruggedness 
Measure

VRM – 0 to 
0.0846

Sappington 
et al. (2007)

7 Roughness Rough m 0 to 
154.33

Geological Predictors
8 Geology Geol C_V – –

Curvature Predictors

9 Profile Curvature Prof_Curv m− 1 − 0.0084 
to 0.0077

Minár et al. 
(2020)

10 Plan Curvature Plan_Curv m− 1 − 3.275 to 
0.935

11 Total Curvature Total_Curv m− 1 0 to 
0.00018

12
Tangential 
Curvature Tang_Curv m− 1 − 0.012 to 

0.011
Hydrological Predictors

13 Nearest distance to 
the river

Dist_R m 0 to 
4670.1

–

14 Topographic 
Wetness Index

TWI –
8.42 to 
18.42

Sörensen et al. 
(2006)

Basin Geometry Predictors

15
Nearest distance to 
basin boundary Dist_B m

0 to 
6232.7 –

Geomorphometric Predictors

16 Morphometric 
Feature

MF C_V 1 to 6 –

17 Geomorphons GM C_V 1 to 10
Jasiewicz and 
Stepinski 
(2013)

18
Multiresolution 
Index of Valley 
Bottom Flatness

MRVBF –
2.6E-14 to 

8.99

Gallant and 
Dowling 
(2003)

19
Multiresolution 
Index of Ridge Top 
Flatness

MRRTF –
4E-15 to 

6.98

Gallant and 
Dowling 
(2003)

20
Morphometric 
Protection Index MPI – 0 to 0.472 –
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Fig. 5. Maps of predictors considered in the present study at a 1 km resolution for the region of interest spanning India, Nepal, Bangladesh and Bhutan.
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7. Residual Calculation: Residuals were calculated as (observed - pre
dicted) for each test point. Since each data point appears in exactly 
one test set, this ensured unbiased residuals.

8. Kriging: The combined residuals from all test sets were used for 
spatial kriging to capture the remaining spatial correlation.

For the site characterization maps preparation, the average of all 
stacked models' predictions was used for prediction on a new location 
with known/extracted values of predictors.

3.3. First stage – Building stacked ensemble model

For the stacked ensemble construction, we began with a compre
hensive evaluation of multiple machine learning algorithms to identify 
optimal base models for each cross-validation fold. Following the data 
partitioning scheme outlined in Section 3.2, we systematically tested 
different algorithm families, including ensemble methods, Neural net
works, Gaussian Process Regression (GPR), Linear regression models, 
and Support Vector Machines (SVM). Each algorithm was evaluated 
using 5-fold cross-validation within the training subset to ensure robust 
performance assessment while preventing overfitting.

For base model evaluation we employed Root Mean Square Error 

Fig. 5. (continued).
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(RMSE), Mean Absolute Error (MAE), and coefficient of determination 
(R2) as primary selection criteria (Table 4). The evaluation process 

prioritized prediction accuracy and algorithmic diversity to ensure 
complementary error patterns in the final ensemble. Multiple ML algo
rithms were evaluated for base model selection, with hyperparameters 
optimized using Bayesian optimization. During hyperparameter opti
mization, fifty trials were evaluated for each model, with the RMSE 
being minimized. Algorithm-specific parameters were systematically 
tuned: ensemble parameters (learning cycles, learning rate, minimum 
leaf size), Gaussian process parameters (kernel functions and hyper
parameters), and support vector machine parameters (regularization 
and kernel scale). Performance evaluation using cross-validation metrics 
(Table 4) was done to identify the top two algorithms per fold for the 
stacked ensemble framework.

The selected base models' interpretability was assessed using SHAP 
values (Lundberg and Lee, 2017), which decompose each natural fre
quency prediction into individual predictor contributions relative to the 
model baseline. Shapley values quantify how terrain morphometry 
(curvature, elevation) and subsurface properties (bedrock depth, geol
ogy) influence site-specific predictions, with magnitude indicating 
impact strength and sign showing directional effect. Mean Shapley 
values reveal which terrain and subsurface features most strongly con
trol fo predictions in our seismic site characterization models. Feature 
importance plots were generated for the base models to ensure robust 
interpretability and validate consistency with seismic site character
ization principles.

Our algorithm selection was guided by established principles in 
seismic site characterization modelling. Tree-based ensemble methods 
(bagged and boosted trees) were prioritized due to their demonstrated 
effectiveness in capturing complex, nonlinear relationships between 
terrain morphometry and geophysical site parameters (Geyin and 
Maurer, 2023; Thakur and Anbazhagan, 2025). These methods inher
ently handle mixed-type predictors (continuous morphometric param
eters and categorical geological classifications) without requiring 
explicit interaction term specification and are robust to the multi-scale 
input data integration characteristic of regional geophysical model
ling. Gaussian Process Regression was evaluated for its ability to model 
spatial correlations and provide uncertainty estimates, while Support 
Vector Machines were tested for their capacity to identify complex de
cision boundaries in high-dimensional feature spaces.

To improve the robustness of the prediction, as discussed, we have 
used model stacking in the first stage. Model stacking is an ensemble 
learning technique that combines multiple diverse base models through 
a meta-learner to achieve better predictions than any individual model 
(Vilalta and Drissi, 2002). Prevalent methods for model stacking are 
bagging (Breiman, 1996), random forest (Ho, 1995), and boosting 
(Freund and Schapire, 1997). It works in the following stages: first, base 
models are trained on the dataset (Tr_i) using cross-validation to avoid 
overfitting. Next prediction on a test set (here Va_i) was then done using 
these base models to generate out-of-fold predictions. Then, a meta- 
learner/ stacked model is trained to combine these base model pre
dictions optimally. The stacked model learns the best way to weight and 
combine the base models' outputs, leveraging their different strengths 
and compensating for individual weaknesses. This approach prevents 
overfitting through cross-validation and reduces bias and variance, 
resulting in more robust predictions than simple averaging or any single 
model alone.

3.4. Second stage – Residuals' Kriging

Following the initial stacked machine learning prediction, residual 
kriging was employed as the second stage to capture and model spatial 
autocorrelation in prediction residuals (Hengl and MacMillan, 2019). In 
the second stage, we applied ordinary kriging to the unbiased residuals 
(ϵ) given as: 

ϵ(Si) = y(Si) − yML(Si) (2) 

where y(Si) and yML(Si) represent observed and ML predicted fo 

Fig. 6. Correlation matrix of all predictors for Predominant Frequency (fo), 
showing relationships between geomorphometric parameters, geological for
mations (Geol_), morphological features (MF_), and Geomorphons' types (GM_). 
Variables are clustered by similarity using hierarchical clustering.

Fig. 7. Dataset partitioning scheme adopted in the present study. SM_i is the 
stacked model for Fold Number (FN) i.

Table 4 
List of performance measures calculated and used for the two stages of model 
building.

Model Performance Measure Formula*

Stage – 1. Stacked Ensemble Model

Root Mean Square Error (RMSE) RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yi − ŷi

)2
√

Mean Absolute Error (MAE) MAE =
∑n

i=1

⃒
⃒yi − ŷi

⃒
⃒

Coefficient of Determination (R2) R2 = 1 −

∑n
i=1

(
yi − ŷi

)2

∑n
i=1

(
yi − y

)2

Stage – 2. Residual Kriging

Residual Sum of Squares (RSS) RSS =
∑m

i=1

[
γempirical(hi) − γmodel(hi)

]2

Akaike Information Criterion (AIC) AIC = n× ln
(

RSS
n

)

+ 2k

* Notations: n – number of data points, yi – observed value for the ith data
point, ŷ – predicted value for the ith datapoint, ȳ - mean value of the observa
tions, m – number of lag classes, k – number of model parameters.
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values for the site Si, respectively. Residuals from the stacked ML model 
(n = 4440) were examined for spatial structure using variogram anal
ysis. The spatial correlation structure of these residuals is characterized 
through empirical variogram analysis. The empirical variogram was 
computed using the method of moments estimator: 

γ(h) =
1

2N(h)
∑N(h)

i=1

[
(Z(xi) − Z(xi + h) )2

]
(3) 

where γ(h) is the semivariance at lag distance h, N(h) is the number 
of point pairs separated by distance h, and Z(xi) represents the residual 
values (Hengl and MacMillan, 2019). For the variogram, a maximum lag 
distance (cutoff) of 15,000 m was applied to focus on the relevant spatial 
scale, with lag intervals of 500 m to ensure adequate point pairs per bin.

Theoretical variogram models were fitted to capture fo variability. 
Eight theoretical variogram models were evaluated, including simple 

models (Nugget, Spherical, Exponential, Gaussian, Matérn, and Linear) 
and nested model combinations (Spherical+Nugget and Expo
nential+Nugget). Anisotropy was assessed by computing directional 
variograms at four principal directions: 0◦ (East-West), 45◦ (Northeast- 
Southwest), 90◦ (North-South), and 135◦ (Northwest-Southeast), each 
with a tolerance angle of ±22.5◦. Model selection was based on Residual 
Sum of Squares (RSS) and Akaike Information Criterion (AIC) as given in 
Table 4; and visual inspection of model fit to empirical variogram. The 
geostatistical analysis was performed using the gstat package in R 
(Pebesma, 2004).

Ordinary kriging of residuals was performed using the best- 
performing variogram model. Spatial interpolation of natural fre
quency residuals was conducted using a two-stage approach combining 
kriging with K-nearest neighbours (KNN) gap filling on a 50-m resolu
tion grid covering different regions. The primary kriging stage involved 
converting global residuals to spatial objects using UTM coordinates, 

Fig. 8. Workflow showing the steps followed in the present study for the Predominant Frequency (fo) prediction for seismic site characterization.
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with training data selected within a 30-km buffer around the region grid 
to ensure adequate local representation. The search parameters were 
selected to ensure adequate local data representation while maintaining 
computational tractability for the high-resolution grid. The secondary 
gap-filling stage addressed locations where ordinary kriging could not 
produce predictions due to insufficient local data density or extreme 
spatial configurations. This stage employed K-nearest neighbours 
interpolation using four nearest valid predictions through simple 
averaging.

3.5. Map preparation

Fig. 8 shows the workflow followed in the present study for the final 
site characterization maps for fo. The present study's two-stage approach 
combines the strength of machine learning algorithms in capturing 
complex nonlinear relationships with geostatistical methods' ability to 
model spatial dependencies (Hengl and MacMillan, 2019; Geyin and 
Maurer, 2023). We used average values obtained from the five stacked 
ML models for the final map preparation. The ML models' predictions 
and the residual kriging were combined to get the final fo-based seismic 
site characterization maps.

For the final map preparation for major capital regions in the region, 
we have chosen a 50 m resolution. The 50 m output grid spacing enables 
visualization of local topographic variations captured by the GLO-30 
DEM and facilitates integration with standard urban planning data
sets. However, the effective prediction resolution is constrained by the 
coarsest input variable – the 250 m bedrock depth dataset. The 50 m 
visualization grid should not be interpreted as implying corresponding 
precision in fo predictions at that scale. The 50 m grid facilitates visu
alization of terrain-controlled patterns but predictions remain most 
reliable at regional scales. Site-specific fo values will require field vali
dation, particularly where complex local geology or anthropogenic 
modifications are not captured by regional predictors.

4. Results and discussion

4.1. Stacked ensemble model's performance evaluation

4.1.1. Base models
Table 5 presents performance metrics for the base models selected 

for each cross-validation fold (FN1 through FN5). The base models were 
developed for log-transformed fo. The model screening phase evaluated 
multiple algorithm types, including ensemble methods, Gaussian pro
cess regression (GPR), various tree-based models, and support vector 
machines (SVMs). From this comprehensive evaluation, the selection 
process consistently identified bagged ensembles as the first base model 

(BM1) and boosted ensembles as the second base model (BM2) across all 
five folds. Despite testing diverse algorithm families, this uniform se
lection outcome indicated that tree-based ensemble methods most 
effectively captured the nonlinear relationships in the fo prediction.

The results show that bagged ensembles achieved validation RMSE 
values of 0.609–0.637 and test RMSE of 0.593–0.636, while boosted 
ensembles showed validation RMSE of 0.636–0.655 and test RMSE of 
0.633–0.662 (Table 5). The corresponding R2 values averaged 0.507 for 
bagged models and 0.471 for boosted models on validation sets, with 
test R2 values of 0.537 and 0.494, respectively. These results demon
strated that bagged ensembles consistently outperformed their boosted 
counterparts with lower prediction errors and higher explained vari
ance. The small differences observed between validation and test per
formance suggested adequate generalization capability. Notably, FN3- 
BM1 improved from validation (RMSE = 0.630) to test (RMSE =
0.593), achieving the best test performance among all base models with 
R2 = 0.585. The analysis of mean absolute error values, which ranged 
from 0.414 to 0.432 for bagged models and 0.459 to 0.479 for boosted 
models, yielded MAE/RMSE ratios of approximately 0.68–0.73, indi
cating consistent error distributions without excessive outlier influence.

The exclusive selection of bagged and boosted ensembles from the 
broader pool of tested algorithms highlighted their relatively better 
performance for our application. The systematic pairing of these two 
ensembles reflected their complementary characteristics: bagged en
sembles reduce variance through bootstrap aggregation, while boosted 
ensembles reduce bias through sequential error correction. This 
complementarity supported their combination through stacked model, 
as each method addressed different sources of prediction error. The 
observed performance consistency across folds demonstrated stable 
predictions despite training data variations. The moderate R2 values 
obtained indicated that while the models captured meaningful variance, 
substantial unexplained variation remained. These results justified the 
subsequent application of spatial interpolation techniques to capture 
localized effects not represented in the predictor variables. The domi
nance of ensemble methods for our present dataset over other tested 
algorithms suggests that the complexity and non-linearity of fo predic
tion require the flexibility of tree-based approaches.

Figs. 9 and 10 provide the plots of the quantitative performance 
assessment obtained from the base model selection process. Fig. 9 dis
plays the predicted versus observed value plots for the best-performing 
base models (FNi-BM1 and FNi-BM2), where the scatter of points rela
tive to the diagonal line reflects the models' predictive accuracy on their 
respective test sets. The distribution pattern shows that the bagged and 
boosted ensemble methods capture the underlying relationships be
tween DEM-derived morphometric parameters and fo measurements. 
Fig. 10 presents the residual plots for these same models, revealing the 

Table 5 
Results of all stacked models (SMs) and their corresponding base models (BMs) using performance measures listed in Table 4 for validation (V) and test (T) sets. These 
results are in natural log units. Here, FNi – Fold Number i, SM_i – Stacked Model i, SVM – Support Vector Machines.

Stacked Model ID Base Model ID Model Type RMSE 
(V)

R2 

(V)
MAE 
(V)

RMSE 
(T)

R2 

(T)
MAE 
(T)

SM_1 Linear Regression 0.621 0.538 0.418 0.633 0.508 0.434
FN1-BM1 Bagged Ensemble 0.609 0.529 0.414 0.636 0.503 0.437
FN1-BM2 Boosted Ensemble 0.639 0.483 0.459 0.656 0.471 0.482

SM_2 Linear SVM 0.627 0.539 0.421 0.622 0.517 0.416
FN2-BM1 Bagged Ensemble 0.637 0.487 0.431 0.629 0.534 0.420
FN2-BM2 Boosted Ensemble 0.654 0.46 0.479 0.662 0.484 0.479

SM_3 Robust Linear 0.588 0.595 0.402 0.587 0.553 0.401
FN3-BM1 Bagged Ensemble 0.630 0.505 0.432 0.593 0.585 0.401
FN3-BM2 Boosted Ensemble 0.655 0.464 0.471 0.633 0.527 0.451

SM_4 Linear Regression 0.617 0.542 0.420 0.608 0.509 0.418
FN4-BM1 Bagged Ensemble 0.624 0.519 0.428 0.620 0.537 0.426
FN4-BM2 Boosted Ensemble 0.655 0.469 0.470 0.650 0.491 0.465

SM_5 Linear Regression 0.625 0.541 0.414 0.626 0.540 0.417
FN5-BM1 Bagged Ensemble 0.614 0.515 0.419 0.632 0.528 0.414
FN5-BM2 Boosted Ensemble 0.636 0.478 0.460 0.653 0.497 0.469
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distribution of prediction errors across the range of fitted values. The 
residual patterns indicate no systematic bias exists in the model pre
dictions. These figures substantiate the performance metrics showing 
RMSE values between 0.593 and 0.662 for the selected base models and 
R2 values ranging from 0.471 to 0.585.

4.1.2. Stacked models
The performance metrics for the five stacked ensemble models (SM_1 

through SM_5), each developed using their respective cross-validation 
folds, are presented in Table 5. Each stacked model incorporates two 
optimally selected base models identified through model screening, with 
the meta-learner combining their predictions to enhance robustness and 
generalization capability. Linear regression appeared in 3 of the five 
base learner positions, while linear support vector machines and robust 
linear regression appeared only in SM_2 and SM_3, respectively. The 
meta-learners (bagged and boosted ensembles) combine the log- 

Fig. 9. Test set's predicted vs observed values plots for a particular fold number FNi (i ∈[1,5]) for their two best-performing base models – BM1 in (a), (c), (e), (g), 
and (i); and BM2 in (b), (d), (f), (h), and (j). Here, the test set is Va_i for a particular fold i and the values are in natural log units.
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transformed base model predictions, which ensure positive predictions 
after back-transformation.

Validation sets' performance showed RMSE values ranging from 
0.588 to 0.627 in log units and R2 values between 0.538 and 0.595. Test 
sets' performance yielded RMSE values between 0.587 and 0.633 and R2 

values from 0.509 to 0.553. The small difference between validation and 
test performance of the stacked models indicates limited overfitting. The 
final prediction methodology averages all five stacked models to 
improve robustness. Averaging models trained on different data subsets 
reduces prediction variance by approximately 1/√5. Each fold covers 
slightly different spatial and geological characteristics, so averaging 
mitigates fold-specific biases. The stacked ensemble approach provides 
stable natural frequency predictions for spatial interpolation and oper
ational use. While individual base models sometimes achieved lower 
error rates, the ensemble framework here offers prediction stability.

Fig. 11 shows the prediction and observed value plots for the stacked 
models' on their respective test folds (Te_i in Fig. 7). These shows 
consistently scatter around the diagonal 1:1 line. Fig. 12 shows the re
siduals variation against predicted values corresponding to the data 
points in Fig. 11. These residual values show the random scatter around 
the x – axis indicating no systematic bias in the stacked models' 
predictions.

4.2. Feature importance analysis

To understand the impact of different predictors we conducted a 
variable importance analysis. The Shapley Importance analysis (see 
Fig. 13) shows that terrain morphometric parameters and geological 

classifications dominated natural frequency prediction. Multiresolution 
Valley Bottom Flatness (MRVBF) emerged as the most important pre
dictor (Shapley value: ~ 0.18), reflecting the critical role of sediment 
accumulation zones in controlling site response characteristics. Valley 
bottom areas systematically correspond to deeper sedimentary deposits 
with strong impedance contrasts which correlate well with low fo values 
(Kramer and Stewart, 2024).

Undivided Precambrian rocks (pC) ranked second in importance 
(Shapley value: ~ 0.17), demonstrating the fundamental influence of 
crystalline basement geology on fo characteristics. Precambrian forma
tions typically comprise high-velocity crystalline rocks (granites, 
gneisses, metamorphic complexes) that create strong impedance con
trasts with overlying sediments and exhibit distinctly different seismic 
response characteristics compared to younger geological formations 
(Zhao et al., 2006).

Elevation lies in the top three positions in all the model results 
(Shapley value: ~ 0.15), confirming its role as a fundamental proxy for 
structural position and geological context. Higher elevations often 
correspond to areas where Precambrian basement approaches the sur
face or where structural uplift has exposed older, more competent 
geological formations with elevated predominant frequencies. Multi
resolution Ridge Top Flatness (MRRTF) and bedrock depth (BD) 
exhibited similar moderate importance levels (Shapley values: ~ 0.04 
and ~ 0.03, respectively). The relatively modest importance of bedrock 
depth data suggests that the combination of depositional environment 
identification and basement rock presence effectively captures the pri
mary controls on impedance contrast variations.

Secondary importance variables, including Morphometric Protection 

Fig. 9. (continued).
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Fig. 10. Test set's residual plots for a particular fold number FNi (i ∈[1,5]) for their two best-performing base models – BM1 in (a), (c), (e), (g), and (i); and BM2 in 
(b), (d), (f), (h), and (j). Here, the test set is Va_i for a particular fold i and the values are in natural log units.
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Index (~ 0.03), surface roughness (~ 0.03), and slope (~ 0.025), 
contributed meaningful but limited predictive power through their 
representation of local topographic complexity and erosional- 
depositional processes. Notably, traditional curvature parameters, 
including profile curvature, plan curvature, and tangential curvature 
exhibited relatively low importance (< 0.01), indicating significantly 
less contribution to fo prediction in this geological context. The impor
tance hierarchy demonstrates that sediment accumulation zone identi
fication and Precambrian basement rock presence provide the primary 
predictive capability, reflecting the fundamental control of depositional 

processes and basement geology on seismic site response characteristics.

4.3. Residuals, Variogram and Kriging results

4.3.1. SEMs residuals
Utilizing the five stacked models' predictions on their respective test 

sets (Te_i) of size n = 888, we calculated unbiased residuals for all the 
locations. A summary of the statistics of these residuals is given in 
Table 6.

The ML model residuals ranged from − 2.48 to 3.15 units with a mean 

Fig. 11. Prediction vs observed value plots for stacked models (SM_i) on their respective test sets (Te_i), where i ∈[1,5]. These values are in natural log units.

H. Thakur and P. Anbazhagan                                                                                                                                                                                                               Engineering Geology 362 (2026) 108541 

15 



of 0.010 ± 0.616 units (mean ± standard deviation), indicating that the 
stacked ML model achieved near-zero bias with moderate variability 
suitable for spatial analysis (Table 6). The empirical variogram was 
calculated using 30 lag classes with a maximum lag distance of 14,748 
m, revealing clear spatial structure in the residuals with semivariance 
increasing systematically from short to intermediate distances before 
stabilizing at longer lags, showing the presence of spatial autocorrela
tion and has been incorporated in the prediction model using residual 
kriging as the second modelling stage. Directional variogram analysis 
was also conducted which showed isotropic spatial structure with no 
significant directional effects. Based on this, we use the omnidirectional 
variogram without incorporating anisotropic corrections.

The exponential, Matérn, and exponential+nugget models achieved 
nearly identical optimal fits (RSS differences <0.000001, Table 7), with 
the exponential model selected for its simplicity and parsimony while 
maintaining identical performance metrics. Following the principle of 
model parsimony, the simpler exponential model was preferred, as it 
requires fewer parameter specifications while achieving identical 
goodness-of-fit.

The exponential variogram model follows the form: 

γ(h) = c0 + c1

⎛

⎝1 − e−
h
a

⎞

⎠ (4) 

where c0 represents the nugget effect, c1 is the partial sill, a is the 
range parameter, and the effective correlation range extends to 3a units, 

representing the distance at which 95 % of the total sill is reached and 
spatial correlation becomes negligible.

The selected exponential model exhibited a nugget effect (co) of 
0.091, representing 48 % of the total sill, indicating substantial short- 
range variation and measurement uncertainty (Fig. 14). The partial 
sill (c1) of 0.1 accounts for 52 % of the total variance, representing the 
structured spatial correlation component. The range parameter (a) of 
2435 m defines the characteristic correlation distance, while the total 
sill (co + c1) of 0.191 represents the complete spatial variance. The 
effective range extends to 7305 m (3a), representing the distance at 
which 95 % of the total sill is reached and spatial correlation becomes 
negligible.

The fitted variogram parameters provide crucial insights into the 
spatial structure of ML residuals and optimization opportunities for the 
two-stage prediction approach. The nugget-to-sill ratio of 48 % indicates 
substantial short-range variation encompassing measurement uncer
tainty, micro-scale environmental heterogeneity not captured by the ML 
feature space. The structured spatial component (52 % of total variance) 
demonstrates that a considerable spatially correlated signal remains in 
the ML residuals, validating the residual kriging approach and sug
gesting meaningful improvements in prediction accuracy are achiev
able. The effective correlation range of 7305 m defines the spatial 
neighborhood within which residual values exhibit significant correla
tion, which can provide guidance for optimal sampling density in future 
data collection.

The good model fit (RSS = 0.000805, R2 = 0.952, RMSE = 0.005179) 

Fig. 12. Residual plots for stacked models (SM_i) on their respective test sets (Te_i), where i ∈[1,5]. These residuals were used for the kriging procedure, and their 
values are in natural log units.
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and strong agreement between empirical and theoretical semivariance 
values across all 30 lag distances confirm that the exponential model 
successfully captures the underlying spatial covariance structure, 
ensuring reliable spatial predictions and uncertainty estimates for the 
residual kriging component of the two-stage modelling framework. Or
dinary kriging was implemented using the exponential variogram model 

with partial sill (c₁) = 0.100, range = 2435 m, and nugget (c₀) = 0.091. 
The kriging procedure employed 4–16 nearest training points within a 
50-km search radius under a constant mean.

4.4. Predominant frequency maps of the capital regions

4.4.1. Delhi
The residual kriging implementation for the Delhi region achieved 

99.48 % spatial coverage, with ordinary kriging predicting most loca
tions on the 50-m resolution grid. K-nearest neighbours (KNN) gap 
filling was applied to complete the remaining 0.52 % of locations where 
kriging could not produce reliable predictions due to sparse local data 
density, achieving complete 100 % grid coverage across the study area. 
The final stacked ensemble model (FSEM) predictions (Fig. 15a) show 
clear spatial patterns of natural frequency variation across the Delhi 
region. High frequency zones (>1.38 Hz) appear in the southeastern 
portion of the study area, corresponding to areas with shallow bedrock 

Fig. 13. Shapley importance plots for the two best-performing base models (BMs) for the stacked model SM_3 in (a) and (b), and SM_5 in (c) and (d). Query points for 
the Shapley importance plots were taken from the test sets (Va_i) of the base model's respective fold i. Parameters other than those mentioned in Table 3 are 
geological categories, morphometric features (MF) and Geomorphons (GM) classes.

Table 6 
Residuals statistics for all five sets obtained using Stacked ensemble models on 
different folds.

ID Count Mean Std Min Max

1 888 − 0.003 0.634 − 2.335 2.891
2 888 0.016 0.622 − 2.363 2.650
3 888 − 0.037 0.586 − 2.238 2.266
4 888 0.054 0.608 − 2.482 2.937
5 888 0.021 0.626 − 2.011 3.152
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and elevated topographic positions. Medium frequency regions 
(0.55–0.70 Hz) are located in the western sectors, while low frequency 
zones (<0.52 Hz) characterize the northeastern areas. The lowest pre
dominant frequency values occur along the Yamuna River floodplains in 
the northeast, reflecting deep alluvial deposits and soft sedimentary 
conditions. A north-to-south gradient is observed, with frequencies 
gradually increasing from the river valley toward higher ground.

The application of residual kriging corrections (Fig. 15b) shows local 
improvements in prediction accuracy, particularly at and around loca
tions where actual fo measurements were conducted. The final regres
sion kriging map (Fig. 15c) integrates the regional trends captured by 
machine learning and the local spatial correlations modeled through 
geostatistical interpolation, improving prediction reliability for seismic 
site characterization applications.

4.4.2. Kathmandu
Residual's ordinary kriging achieved complete spatial coverage for 

the Kathmandu region using the global variogram model parameters 
derived from the residual analysis. Unlike the Delhi implementation, no 
gap-filling procedures were required due to the adequate spatial distri
bution of training data relative to the study area extent.

The FSEM predictions (Fig. 16a) show the characteristic bowl-shaped 

frequency distribution of the Kathmandu basin, with the lowest natural 
frequencies (<1.0 Hz) concentrated in the central basin floor where 
thick lacustrine sediments are present. Higher frequency values (> 3.2 
Hz) are observed along the basin margins and surrounding hills, corre
sponding to bedrock outcrops and shallow soil cover. The north-south 
trending frequency patterns reflect the basin's structural geology, with 
notable low-frequency corridors following ancient lake bed deposits.

Residual kriging adjustments (Fig. 16b) show local corrections, 
particularly in the transition zones between the basin floor and sur
rounding hills, where geological contacts create sharp impedance con
trasts. The final regression kriging results (Fig. 16c) capture both the 
large-scale basin geometry effects and localized geological influences, 
providing detailed natural frequency characterization for earthquake 
hazard assessment in this densely populated urban center.

4.4.3. Dhaka
The Dhaka region analysis employed the ordinary kriging with 

global variogram parameters, achieving complete spatial coverage 
without additional interpolation techniques. The uniform data distri
bution across the study area enabled consistent regional prediction 
quality. The FSEM map (Fig. 17a) displays the characteristic low- 
frequency signature of the Bengal Delta region, with most areas 
showing natural frequencies below 1.02 Hz, reflecting the presence of 
deep alluvial deposits and recent deltaic sediments. Variations are 
observed across the region, with higher frequencies in the western areas 
corresponding to older alluvial terraces, and the lowest frequencies in 
the eastern sectors where active floodplain processes maintain softer 
sedimentary conditions.

The residual kriging component (Fig. 17b) shows fine-scale spatial 
structure in the prediction residuals, capturing local geological varia
tions not fully represented by the morphometric predictors. The inte
grated regression kriging results (Fig. 17c) provide a comprehensive 
natural frequency map that accounts for regional depositional patterns 
and local site effects, offering information for seismic hazard assessment 
in this expanding megacity built on unconsolidated sediments.

4.5. Methodological performance and comparative analysis

4.5.1. DEM-based natural frequency prediction performance
The stacked ensemble approach achieved test R2 values of 

0.509–0.553 and RMSE of 0.587–0.633 across cross-validation folds, 
demonstrating moderate predictive capability for predominant fre
quency (fo) estimation using satellite-derived morphometric parame
ters. The regression kriging approach provides reliable regional-scale 
patterns appropriate for preliminary seismic zonation and planning 
applications. However, the 49 % unexplained variance and multi- 
resolution input constraints necessitate field validation for site-specific 
engineering design. The performance consistency across folds in
dicates stable predictions despite training data variations. A comparison 
with Vs30 (shear wave velocity for top 30 m of soil profile) prediction 
methodology provide relevant context for evaluating these results. 
Established approaches using topographic proxies typically achieve 
similar performance metrics values in morphometric studies report 
modest R2 ranges in diverse geological settings (Thakur and 

Table 7 
Variogram model comparison results. RSS – Residuals Sum of Squares, AIC – Akaike Information Criterion.

ID Model RSS AIC Range (m) Sill Nugget

1 Exponential 0.000805 − 311.79 2435 0.191 0.091
2 Matérn 0.000805 − 311.79 2435 0.191 0.091
3 Exponential+Nugget 0.000805 − 311.79 2435 0.191 0.091
4 Spherical 0.002092 − 283.13 4800 0.183 0.096
5 Spherical+Nugget 0.002093 − 283.11 4799 0.183 0.096
6 Linear 0.002552 − 277.16 3434 0.181 0.098
7 Gaussian 0.002642 − 276.12 2091 0.180 0.105
8 Nugget 0.069230 − 180.15 0 0.134 0.134

Fig. 14. Variogram modelling results for the residuals obtained from stacked 
ensemble models (SEMs) – (a) Exponential model parameters, (b) Variation of 
number of point pairs with distance corresponding to each empirical data point. 
Here, a – Range, S – sill (c0 + c1), c0 – nugget.
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Anbazhagan, 2025). Our predominant frequency (fo) prediction performance falls within this range, suggesting comparable accuracy 

Fig. 15. Predominant Frequency (fo in Hz) prediction obtained for the Delhi region using (a) final Stacked Ensemble Model (FSEM), (b) residual kriging (RK), and (c) 
Regression Kriging (combining FSEM and RK). The map is prepared using a 50 m × 50 m grid and fo classes are coloured based on quantiles.
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between DEM-based approaches for these distinct but related seismic 
parameters.

Tree-based ensemble methods consistently outperformed other al
gorithms in our study, aligning with recent trends in Vs30 prediction 
research where ensemble approaches increasingly show superior per
formance for complex terrain-geophysical relationships (Geyin and 
Maurer, 2023; Thakur and Anbazhagan, 2025). The exclusive selection 
of bagged and boosted ensembles across all cross-validation folds in
dicates that these methods effectively capture the nonlinear relation
ships between terrain morphometry and fo. While operational Vs30 
systems rely primarily on topographic slope, our approach integrates 
comprehensive morphometric variables including elevation, curvature 
parameters, and terrain complexity indices.

This methodological difference reflects the distinct nature of fo 
against Vs30 as seismic site characterization parameters – Vs30 char
acterizes time-averaged subsurface velocity structure while fo quantifies 
resonant response characteristics. The prominence of MRVBF (Shapley 
value ~0.18) as the primary predictor reflects the physical relationship 
between sediment accumulation processes and seismic site response. 
Geological formation characteristics, particularly Precambrian rocks 
(Shapley value ~0.17), contribute substantially to predictions, indi
cating that both topographic and geological factors influence natural 
frequency patterns at regional scales. The comparable performance be
tween our fo prediction approach and established Vs30 methods sug
gests that satellite-derived terrain analysis can effectively capture 
subsurface geological controls relevant to seismic site response. How
ever, both parameters provide complementary rather than equivalent 
information for site characterization applications.

4.5.2. Resolution of scale-dependent effects in HVSR studies
The relationship between terrain morphometry and fo prediction 

shows sensitivity to spatial scale and data characteristics. Basin-scale 
studies have reported limited effectiveness of geomorphometric 

variables (Trevisani et al., 2017; Trevisani et al., 2021), while regional- 
scale analysis reveals substantial predictive capability. This difference 
appears related to spatial extent and data density rather than funda
mental methodological limitations.

The variogram analysis reveals important spatial characteristics: a 
nugget-to-sill ratio of 48 % with an effective correlation range of 7305 m 
indicates substantial spatial structure in natural frequency patterns. The 
structured spatial component (52 % of total variance) remaining in ML 
residuals validates the regression kriging approach and suggests that 
spatial correlation modelling provides meaningful prediction improve
ments beyond machine learning alone. These findings suggest that DEM- 
derived predictors become effective when sufficient spatial coverage 
and geological diversity are present in the dataset. The scale- 
dependency has practical implications for remote sensing applications, 
indicating that regional-scale approaches may be more suitable for 
satellite-based site characterization than local-scale applications.

4.6. Limitations and future research scope

The present methodology addresses practical needs in regions where 
traditional geotechnical site characterization is logistically challenging. 
High-resolution predominant frequency (fo) mapping using globally 
available satellite data provides site response information for earth
quake engineering applications, particularly in rapidly developing 
urban areas. However, several limitations affect broader applications. 
Model performance explains approximately 51 % of predominant fre
quency (fo) variance, indicating substantial unexplained variation re
mains. Model performance (R2 ≈ 0.51) is appropriate for regional-scale 
seismic hazard assessment and preliminary zonation but insufficient for 
site-specific engineering design or detailed microzonation where clas
sification accuracy is critical. The 49 % unexplained variance reflects 
local subsurface heterogeneity not captured by DEM analysis which 
includes buried paleo-channels, weathered zones, and anthropogenic 

Fig. 15. (continued).

H. Thakur and P. Anbazhagan                                                                                                                                                                                                               Engineering Geology 362 (2026) 108541 

20 



fills. Field validation through direct fo measurements remains essential for engineering design applications. The effective correlation range of 

Fig. 16. Predominant Frequency (fo in Hz) prediction obtained for the Kathmandu region using (a) final Stacked Ensemble Model (FSEM), (b) residual kriging (RK), 
and (c) Regression Kriging (combining FSEM and RK). The map is prepared using a 50 m × 50 m grid and fo classes are coloured based on quantiles.
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~7 km suggests that interpolation accuracy decreases significantly 
beyond this distance from training data, affecting prediction reliability 
in poorly sampled areas. Also, the predicted fo values represent char
acteristic site frequencies based on HVSR measurements, not event- 
specific resonance frequencies and actual site response during earth
quakes may vary with source directionality, incident wavefield 
composition, and nonlinear soil behaviour. Our maps provide average 
site response proxies suitable for regional hazard assessment and pre
liminary planning, not event-specific predictions for critical infrastruc
ture design.

Our proposed methodology integrates multi-resolution input data 
spanning three orders of magnitude in spatial scale. While the GLO-30 
DEM provides 30 m resolution topographic information, bedrock 
depth data is available only at 250 m resolution, and geological for
mations are mapped at scales coarser than 1:500,000. Although the 
model successfully integrates these disparate scales through machine 
learning, the effective prediction resolution is fundamentally con
strained by the coarsest input variable, which in this case is the bedrock 
depth dataset at approximately 250 m. The high-resolution 50 m output 
grids serve two practical purposes: enabling detailed visualization of 
topographic influences on fo predictions and facilitating integration 
with standard urban planning GIS datasets. However, these fine visu
alization grids should not be interpreted as implying corresponding 
precision in fo predictions at sub grid scales. The spatial uncertainty is 
further compounded by georeferencing procedures applied to source 
studies' published maps, which introduce positional uncertainties 
ranging from 50 to 200 m depending on map quality and ground control 
point availability. These combined factors limit the effective spatial 
precision of predictions, though regional-scale patterns remain robust 
and appropriate for preliminary seismic zonation and planning 
applications.

The present study's approach also requires validation in different 
geological and tectonic contexts before widespread application. Areas 

with complex geological structures, significant anthropogenic modifi
cations, or disconnected relationships between surface topography and 
bedrock conditions may exhibit reduced prediction accuracy. Addi
tionally, the reliance on existing measurement databases limits spatial 
coverage in some regions, and the effectiveness of terrain morphometric 
parameters depends on the specific relationships between surface 
morphology and subsurface conditions in different environments. Inte
gration of additional satellite-derived variables could potentially 
improve prediction accuracy, though the moderate performance of 
comprehensive morphometric analysis suggests that terrain-based ap
proaches may have inherent limitations for fo prediction. Multi-sensor 
data fusion incorporating SAR backscatter, and optical vegetation 
indices represents potential enhancement pathways. The framework's 
modular design enables adaptation to different remote sensing platforms 
and integration with existing monitoring systems.

The compiled dataset exhibits spatial heterogeneity, with measure
ment concentration in urban centers (Delhi, Kathmandu, Dhaka) 
reflecting the distribution of government microzonation projects and 
research studies in populated areas. This urban bias may limit model 
extrapolation accuracy to under sampled mountainous terrain, high- 
elevation plateaus, intermontane basins, and steep slopes where infra
structure development occurs but measurements remain sparse. While 
the dataset captures diverse geological contexts (Quaternary sediments, 
Precambrian basement, multiple depositional environments) essential 
for regional pattern recognition, the uneven spatial distribution repre
sents an inherent limitation of retrospectively compiled measurements. 
Also, regional-scale patterns captured by terrain morphometry and 
geological classifications provide first-order approximations suitable for 
preliminary hazard assessment, but site-specific validation remains 
essential for infrastructure applications in under sampled terrain types. 
Future studies should prioritize systematic measurements across eleva
tion gradients, diverse geological contexts, and currently sparse regions 
to improve model representativeness across the full range of Himalayan 

Fig. 16. (continued).
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terrain types and assess model transferability beyond accessible valley sites.

Fig. 17. Predominant Frequency (fo in Hz) prediction obtained for the Dhaka region using (a) final Stacked Ensemble Model (FSEM), (b) residual kriging (RK), and 
(c) Regression Kriging (combining FSEM and RK). The map is prepared using a 50 m × 50 m grid and fo classes are coloured based on quantiles.
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Future research should also focus on developing region-specific 
calibration approaches that account for local geological conditions 
and their influence on terrain – frequency (fo) relationships. Physics- 
based feature engineering approaches combining multiple terrain pa
rameters into composite indices specifically designed for fo prediction 
could enhance accuracy by capturing complex interactions between 
terrain characteristics and their combined influence on site response 
mechanisms. Integration of additional remote sensing data sources, 
including synthetic aperture radar and hyperspectral imagery, could 
provide enhanced characterization of subsurface conditions and 
improve prediction accuracy in complex geological environments.

5. Summary and Conclusion

This study establishes that satellite-derived terrain morphometry, 
combined with geological classifications and bedrock depth data, en
ables robust regional-scale predominant frequency (fo) prediction when 
integrated through machine learning frameworks. This represents a 
methodological advancement over previous approaches that relied 
exclusively on spatial interpolation techniques such as kriging, inverse 
distance weighting, and natural neighbor methods which simply redis
tribute measured values without leveraging terrain characteristics, 
geological context, or subsurface parameters. While basin-scale studies 
found limited utility in geomorphometric variables due to sparse data 
(Trevisani et al., 2021), our regional analysis with 4400 measurements 
demonstrates that physical predictors substantially enhance fo mapping 
reliability beyond what interpolation alone can achieve.

Our analysis reveals a clear predictor hierarchy governing seismic 
site response. Out of twenty predictors, valley bottom identification 
(MRVBF) emerges as the strongest predictor (Shapley importance ≈
0.18), reflecting the critical role of sediment accumulation zones in 
controlling impedance contrasts. Geological formation characteristics, 
particularly Precambrian basement rocks (≈ 0.17), rank second, 

followed by elevation (≈ 0.15) and bedrock depth. This hierarchy 
directly reflects the physical controls of depositional environments and 
basement geology on natural frequency patterns. The two-stage 
regression kriging framework achieves R2 = 0.516 and RMSE = 0.634 
log units, with variogram analysis revealing that 52 % of residual vari
ance exhibits spatial correlation extending 7.3 km. This structured 
spatial component validates combining machine learning predictions 
with geostatistical interpolation, demonstrating that each stage captures 
complementary aspects of fo variation.

The methodology provides practical benefits for earthquake-prone 
developing regions where conventional geotechnical site characteriza
tion remains logistically challenging and cost-prohibitive. Generated fo 
maps for Delhi, Kathmandu, and Dhaka successfully delineate con
trasting site response zones from low-frequency deep sedimentary ba
sins (<1.0 Hz) to high-frequency bedrock-controlled areas (>3.0 Hz) 
using globally available satellite data. Unlike interpolation methods 
requiring dense measurement networks, the predictive approach ex
tends reliable mapping to undersampled areas through learned terrain- 
frequency relationships, offering significant operational advantages for 
regional seismic zonation and preliminary hazard assessment.

However, critical limitations define appropriate application bound
aries. The moderate model performance (R2 ≈ 0.51) suits regional 
planning purposes but proves insufficient for site-specific engineering 
design. The 49 % unexplained variance reflects local subsurface com
plexities such as buried paleo-channels, weathered zones, anthropogenic 
fills etc. that surface-derived parameters cannot capture. Consequently, 
field validation through direct fo measurements remains essential for 
infrastructure applications. Additionally, effective prediction resolution 
is constrained by the coarsest input dataset (250 m bedrock depth), not 
the 50 m visualization grid. Georeferencing uncertainties, multi- 
resolution data integration across three orders of magnitude, and 
urban measurement concentration further limit extrapolation confi
dence to undersampled regions. The predicted fo values represent 

Fig. 17. (continued).
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characteristic site frequencies from HVSR measurements rather than 
event-specific earthquake resonance, which varies with source mecha
nisms and incident wavefield properties.

Future advances for the fo prediction improvement will require 
systematic field campaigns targeting elevation gradients, diverse 
geological contexts, and currently data sparse regions to improve model 
transferability beyond the present scope. Methodological enhancements 
through physics-based composite indices combining terrain parameters, 
integration of gravity anomalies constraining basin geometry, higher- 
resolution bedrock depth datasets, and region-specific calibration ac
counting for local geological conditions may offer pathways toward 
improved accuracy. The demonstrated capability of DEM-based pre
dictive modelling to generate regional fo maps from globally available 
data represents meaningful progress for seismic site characterization in 
data-constrained regions, provided practitioners recognize the meth
odology's appropriate scope for planning applications and the continued 
necessity of field validation for engineering design.
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